This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

1983 AMC 12/AHSME, 25

If $60^a = 3$ and $60^b = 5$, then $12^{[(1-a-b)/2(1-b)]}$ is $\text{(A)} \ \sqrt{3} \qquad \text{(B)} \ 2 \qquad \text{(C)} \ \sqrt{5} \qquad \text{(D)} \ 3 \qquad \text{(E)} \ \sqrt{12}$

2009 Vietnam Team Selection Test, 1

Let $ a,b,c$ be positive numbers.Find $ k$ such that: $ (k \plus{} \frac {a}{b \plus{} c})(k \plus{} \frac {b}{c \plus{} a})(k \plus{} \frac {c}{a \plus{} b}) \ge (k \plus{} \frac {1}{2})^3$

Today's calculation of integrals, 889

Find the area $S$ of the region enclosed by the curve $y=\left|x-\frac{1}{x}\right|\ (x>0)$ and the line $y=2$.

2013 USA TSTST, 2

A finite sequence of integers $a_1, a_2, \dots, a_n$ is called [i]regular[/i] if there exists a real number $x$ satisfying \[ \left\lfloor kx \right\rfloor = a_k \quad \text{for } 1 \le k \le n. \] Given a regular sequence $a_1, a_2, \dots, a_n$, for $1 \le k \le n$ we say that the term $a_k$ is [i]forced[/i] if the following condition is satisfied: the sequence \[ a_1, a_2, \dots, a_{k-1}, b \] is regular if and only if $b = a_k$. Find the maximum possible number of forced terms in a regular sequence with $1000$ terms.

2010 Contests, 1

Let $f:\mathbb N\rightarrow\mathbb N$ be a non-decreasing function and let $n$ be an arbitrary natural number. Suppose that there are prime numbers $p_1,p_2,\dots,p_n$ and natural numbers $s_1,s_2,\dots,s_n$ such that for each $1\leq i\leq n$ the set $\{f(p_ir+s_i)|r=1,2,\dots\}$ is an infinite arithmetic progression. Prove that there is a natural number $a$ such that \[f(a+1), f(a+2), \dots, f(a+n)\] form an arithmetic progression.

1998 Estonia National Olympiad, 1

Tags: algebra , logarithm
Solve the equation $x^2+1 = log_2(x+2)- 2x$.

1949 Putnam, B2

Answer either (i) or (ii): (i) Prove that $$\sum_{n=2}^{\infty} \frac{\cos (\log \log n)}{\log n}$$ diverges. (ii) Assume that $p>0, a>0$, and $ac-b^{2} >0,$ and show that $$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{ dx\; dy}{(p+ax^2 +2bxy+ cy^2 )^{2}}= \pi p^{-1} (ac-b^{2})^{- 1\slash 2}.$$

2010 Today's Calculation Of Integral, 647

Evaluate \[\int_0^{\pi} xp^x\cos qx\ dx,\ \int_0^{\pi} xp^x\sin qx\ dx\ (p>0,\ p\neq 1,\ q\in{\mathbb{N^{+}}})\] Own

2014 Bosnia And Herzegovina - Regional Olympiad, 1

Solve logarithmical equation $x^{\log _{3} {x-1}} + 2(x-1)^{\log _{3} {x}}=3x^2$

2013 Today's Calculation Of Integral, 883

Prove that for each positive integer $n$ \[\frac{4n^2+1}{4n^2-1}\int_0^{\pi} (e^{x}-e^{-x})\cos 2nx\ dx>\frac{e^{\pi}-e^{-\pi}-2}{4}\ln \frac{(2n+1)^2}{(2n-1)(n+3)}.\]

2009 Today's Calculation Of Integral, 484

Let $C: y=\ln x$. For each positive integer $n$, denote by $A_n$ the area of the part enclosed by the line passing through two points $(n,\ \ln n),\ (n+1,\ \ln (n+1))$ and denote by $B_n$ that of the part enclosed by the tangent line at the point $(n,\ \ln n)$, $C$ and the line $x=n+1$. Let $g(x)=\ln (x+1)-\ln x$. (1) Express $A_n,\ B_n$ in terms of $n,\ g(n)$ respectively. (2) Find $\lim_{n\to\infty} n\{1-ng(n)\}$.

2013 USAMTS Problems, 5

Let $S$ be a planar region. A $\emph{domino-tiling}$ of $S$ is a partition of $S$ into $1\times2$ rectangles. (For example, a $2\times3$ rectangle has exactly $3$ domino-tilings, as shown below.) [asy] import graph; size(7cm); pen dps = linewidth(0.7); defaultpen(dps); draw((0,0)--(3,0)--(3,2)--(0,2)--cycle, linewidth(2)); draw((4,0)--(4,2)--(7,2)--(7,0)--cycle, linewidth(2)); draw((8,0)--(8,2)--(11,2)--(11,0)--cycle, linewidth(2)); draw((1,0)--(1,2)); draw((2,1)--(3,1)); draw((0,1)--(2,1), linewidth(2)); draw((2,0)--(2,2), linewidth(2)); draw((4,1)--(7,1)); draw((5,0)--(5,2), linewidth(2)); draw((6,0)--(6,2), linewidth(2)); draw((8,1)--(9,1)); draw((10,0)--(10,2)); draw((9,0)--(9,2), linewidth(2)); draw((9,1)--(11,1), linewidth(2)); [/asy] The rectangles in the partition of $S$ are called $\emph{dominoes}$. (a) For any given positive integer $n$, find a region $S_n$ with area at most $2n$ that has exactly $n$ domino-tilings. (b) Find a region $T$ with area less than $50000$ that has exactly $100002013$ domino-tilings.

2009 Today's Calculation Of Integral, 460

$ \int_{\minus{}\frac{\pi}{3}}^{\frac{\pi}{6}} \left|\frac{4\sin x}{\sqrt{3}\cos x\minus{}\sin x}\right|\ dx$.

2013 Today's Calculation Of Integral, 887

For the function $f(x)=\int_0^x \frac{dt}{1+t^2}$, answer the questions as follows. Note : Please solve the problems without using directly the formula $\int \frac{1}{1+x^2}\ dx=\tan^{-1}x +C$ for Japanese High School students those who don't study arc sin x, arc cos x, arc tanx. (1) Find $f(\sqrt{3})$ (2) Find $\int_0^{\sqrt{3}} xf(x)\ dx$ (3) Prove that for $x>0$. $f(x)+f\left(\frac{1}{x}\right)$ is constant, then find the value.

2008 Harvard-MIT Mathematics Tournament, 4

([b]4[/b]) Let $ a$, $ b$ be constants such that $ \lim_{x\rightarrow1}\frac {(\ln(2 \minus{} x))^2}{x^2 \plus{} ax \plus{} b} \equal{} 1$. Determine the pair $ (a,b)$.

2009 Today's Calculation Of Integral, 471

Evaluate $ \int_1^e \frac{1\minus{}x(e^x\minus{}1)}{x(1\plus{}xe^x\ln x)}\ dx$.

2012 Today's Calculation Of Integral, 796

Answer the following questions: (1) Let $a$ be non-zero constant. Find $\int x^2 \cos (a\ln x)dx.$ (2) Find the volume of the solid generated by a rotation of the figures enclosed by the curve $y=x\cos (\ln x)$, the $x$-axis and the lines $x=1,\ x=e^{\frac{\pi}{4}}$ about the $x$-axis.

2005 Today's Calculation Of Integral, 37

Evaluate \[\int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} \frac{1}{\sin x \sqrt{1-\cos x}}dx\]

2005 Today's Calculation Of Integral, 46

Find the minimum value of $\int_0^1 \frac{|t-x|}{t+1}dt$

2014 Dutch BxMO/EGMO TST, 5

Let $n$ be a positive integer. Daniel and Merlijn are playing a game. Daniel has $k$ sheets of paper lying next to each other on a table, where $k$ is a positive integer. On each of the sheets, he writes some of the numbers from $1$ up to $n$ (he is allowed to write no number at all, or all numbers). On the back of each of the sheets, he writes down the remaining numbers. Once Daniel is finished, Merlijn can flip some of the sheets of paper (he is allowed to flip no sheet at all, or all sheets). If Merlijn succeeds in making all of the numbers from $1$ up to n visible at least once, then he wins. Determine the smallest $k$ for which Merlijn can always win, regardless of Daniel’s actions.

2010 IMC, 2

Compute the sum of the series $\sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} = \frac{1}{1\cdot2\cdot3\cdot4} + \frac{1}{5\cdot6\cdot7\cdot8} + ...$

1987 AMC 12/AHSME, 20

Evaluate \[ \log_{10}(\tan 1^{\circ})+ \log_{10}(\tan 2^{\circ})+ \log_{10}(\tan 3^{\circ})+ \cdots + \log_{10}(\tan 88^{\circ})+\log_{10}(\tan 89^{\circ}). \] $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ \frac{1}{2}\log_{10}(\frac{\sqrt{3}}{2}) \qquad\textbf{(C)}\ \frac{1}{2}\log_{10}2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{none of these} $

2003 AMC 12-AHSME, 24

If $ a\ge b>1$, what is the largest possible value of $ \log_a(a/b)\plus{}\log_b(b/a)$? $ \textbf{(A)}\ \minus{}2 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

1989 Canada National Olympiad, 3

Define $ \{ a_n \}_{n\equal{}1}$ as follows: $ a_1 \equal{} 1989^{1989}; \ a_n, n > 1,$ is the sum of the digits of $ a_{n\minus{}1}$. What is the value of $ a_5$?

2007 Today's Calculation Of Integral, 254

Evaluate $ \int_e^{e^2} \frac {(\ln x)^7\minus{}7!}{(\ln x)^8}\ dx.$ Sorry, I have deleted my first post because that was wrong. kunny