This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 76

1969 IMO Longlists, 48

$(NET 3)$ Let $x_1, x_2, x_3, x_4,$ and $x_5$ be positive integers satisfying \[x_1 +x_2 +x_3 +x_4 +x_5 = 1000,\] \[x_1 -x_2 +x_3 -x_4 +x_5 > 0,\] \[x_1 +x_2 -x_3 +x_4 -x_5 > 0,\] \[-x_1 +x_2 +x_3 -x_4 +x_5 > 0,\] \[x_1 -x_2 +x_3 +x_4 -x_5 > 0,\] \[-x_1 +x_2 -x_3 +x_4 +x_5 > 0\] $(a)$ Find the maximum of $(x_1 + x_3)^{x_2+x_4}$ $(b)$ In how many different ways can we choose $x_1, . . . , x_5$ to obtain the desired maximum?

1966 IMO Shortlist, 44

What is the greatest number of balls of radius $1/2$ that can be placed within a rectangular box of size $10 \times 10 \times 1 \ ?$

1979 IMO Shortlist, 11

Given real numbers $x_1, x_2, \dots , x_n \ (n \geq 2)$, with $x_i \geq \frac 1n \ (i = 1, 2, \dots, n)$ and with $x_1^2+x_2^2+\cdots+x_n^2 = 1$ , find whether the product $P = x_1x_2x_3 \cdots x_n$ has a greatest and/or least value and if so, give these values.

1995 IMO, 4

Find the maximum value of $ x_{0}$ for which there exists a sequence $ x_{0},x_{1}\cdots ,x_{1995}$ of positive reals with $ x_{0} \equal{} x_{1995}$, such that \[ x_{i \minus{} 1} \plus{} \frac {2}{x_{i \minus{} 1}} \equal{} 2x_{i} \plus{} \frac {1}{x_{i}}, \] for all $ i \equal{} 1,\cdots ,1995$.

1966 IMO Longlists, 46

Let $a,b,c$ be reals and \[f(a, b, c) = \left| \frac{ |b-a|}{|ab|} +\frac{b+a}{ab} -\frac 2c \right| +\frac{ |b-a|}{|ab|} +\frac{b+a}{ab} +\frac 2c\] Prove that $f(a, b, c) = 4 \max \{\frac 1a, \frac 1b,\frac 1c \}.$

1984 IMO Shortlist, 5

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

1979 IMO Longlists, 60

Given the integer $n > 1$ and the real number $a > 0$ determine the maximum of $\sum_{i=1}^{n-1} x_i x_{i+1}$ taken over all nonnegative numbers $x_i$ with sum $a.$

2001 IMO Shortlist, 4

Let $M$ be a point in the interior of triangle $ABC$. Let $A'$ lie on $BC$ with $MA'$ perpendicular to $BC$. Define $B'$ on $CA$ and $C'$ on $AB$ similarly. Define \[ p(M) = \frac{MA' \cdot MB' \cdot MC'}{MA \cdot MB \cdot MC}. \] Determine, with proof, the location of $M$ such that $p(M)$ is maximal. Let $\mu(ABC)$ denote this maximum value. For which triangles $ABC$ is the value of $\mu(ABC)$ maximal?

1989 IMO Longlists, 84

Let $ n \in \mathbb{Z}^\plus{}$ and let $ a, b \in \mathbb{R}.$ Determine the range of $ x_0$ for which \[ \sum^n_{i\equal{}0} x_i \equal{} a \text{ and } \sum^n_{i\equal{}0} x^2_i \equal{} b,\] where $ x_0, x_1, \ldots , x_n$ are real variables.

1979 IMO Longlists, 29

Given real numbers $x_1, x_2, \dots , x_n \ (n \geq 2)$, with $x_i \geq \frac 1n \ (i = 1, 2, \dots, n)$ and with $x_1^2+x_2^2+\cdots+x_n^2 = 1$ , find whether the product $P = x_1x_2x_3 \cdots x_n$ has a greatest and/or least value and if so, give these values.

1995 IMO Shortlist, 2

Find the maximum value of $ x_{0}$ for which there exists a sequence $ x_{0},x_{1}\cdots ,x_{1995}$ of positive reals with $ x_{0} \equal{} x_{1995}$, such that \[ x_{i \minus{} 1} \plus{} \frac {2}{x_{i \minus{} 1}} \equal{} 2x_{i} \plus{} \frac {1}{x_{i}}, \] for all $ i \equal{} 1,\cdots ,1995$.

1991 IMO Shortlist, 27

Determine the maximum value of the sum \[ \sum_{i < j} x_ix_j (x_i \plus{} x_j) \] over all $ n \minus{}$tuples $ (x_1, \ldots, x_n),$ satisfying $ x_i \geq 0$ and $ \sum^n_{i \equal{} 1} x_i \equal{} 1.$

1984 IMO Longlists, 20

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

1967 IMO Longlists, 19

The $n$ points $P_1,P_2, \ldots, P_n$ are placed inside or on the boundary of a disk of radius 1 in such a way that the minimum distance $D_n$ between any two of these points has its largest possible value $D_n.$ Calculate $D_n$ for $n = 2$ to 7. and justify your answer.

2016 Iran Team Selection Test, 4

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

1981 IMO Shortlist, 3

Find the minimum value of \[\max(a + b + c, b + c + d, c + d + e, d + e + f, e + f + g)\] subject to the constraints (i) $a, b, c, d, e, f, g \geq 0,$ (ii)$ a + b + c + d + e + f + g = 1.$

2024 Indonesia TST, C

Given a sequence of integers $A_1,A_2,\cdots A_{99}$ such that for every sub-sequence that contains $m$ consecutive elements, there exist not more than $max\{ \frac{m}{3} ,1\}$ odd integers. Let $S=\{ (i,j) \ | i<j \}$ such that $A_i$ is even and $A_j$ is odd. Find $max\{ |S|\}$.

1967 IMO Longlists, 13

Find whether among all quadrilaterals, whose interiors lie inside a semi-circle of radius $r$, there exist one (or more) with maximum area. If so, determine their shape and area.

2016 Taiwan TST Round 1, 2

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2002 Kazakhstan National Olympiad, 3

Let $A = (a_1, a_2, \ldots, a_{2001})$ be a sequence of positive integers. Let $m$ be the number of 3-element subsequences $(a_i,a_j,a_k)$ with $1 \leq i < j < k \leq 2001$, such that $a_j = a_i + 1$ and $a_k = a_j + 1$. Considering all such sequences $A$, find the greatest value of $m$.

1977 IMO Shortlist, 15

In a finite sequence of real numbers the sum of any seven successive terms is negative and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.

1979 IMO Longlists, 15

Let $n \geq 2$ be an integer. Find the maximal cardinality of a set $M$ of pairs $(j, k)$ of integers, $1 \leq j < k \leq n$, with the following property: If $(j, k) \in M$, then $(k,m) \not \in M$ for any $m.$

1983 IMO Longlists, 35

Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that \[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]

2015 Romania Team Selection Tests, 5

Given an integer $N \geq 4$, determine the largest value the sum $$\sum_{i=1}^{\left \lfloor{\frac{k}{2}}\right \rfloor+1}\left( \left \lfloor{\frac{n_i}{2}}\right \rfloor+1\right)$$ may achieve, where $k, n_1, \ldots, n_k$ run through the integers subject to $k \geq 3$, $n_1 \geq \ldots\geq n_k\geq 1$ and $n_1 + \ldots + n_k = N$.

1997 Nordic, 1

Let $A$ be a set of seven positive numbers. Determine the maximal number of triples $(x, y, z)$ of elements of $A$ satisfying $x < y$ and $x + y = z$.