This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 191

1985 All Soviet Union Mathematical Olympiad, 401

In the diagram below $a, b, c, d, e, f, g, h, i, j$ are distinct positive integers and each (except $a, e, h$ and $j$) is the sum of the two numbers to the left and above. For example, $b = a + e, f = e + h, i = h + j$. What is the smallest possible value of $d$? j h i e f g a b c d

2014 Finnish National High School Mathematics, 5

Determine the smallest number $n \in Z_+$, which can be written as $n = \Sigma_{a\in A}a^2$, where $A$ is a finite set of positive integers and $\Sigma_{a\in A}a= 2014$. In other words: what is the smallest positive number which can be written as a sum of squares of different positive integers summing to $2014$?

2005 Spain Mathematical Olympiad, 2

Let $r,s,u,v$ be real numbers. Prove that: $$min\{r-s^2,s-u^2, u-v^2,v-r^2\}\le \frac{1}{4}$$

2020 JBMO Shortlist, 3

Find all triples of positive real numbers $(a, b, c)$ so that the expression $M = \frac{(a + b)(b + c)(a + b + c)}{abc}$ gets its least value.

2019 Romania Team Selection Test, 1

Let be a natural number $ n\ge 3. $ Find $$ \inf_{\stackrel{ x_1,x_2,\ldots ,x_n\in\mathbb{R}_{>0}}{1=P\left( x_1,x_2,\ldots ,x_n\right)}}\sum_{i=1}^n\left( \frac{1}{x_i} -x_i \right) , $$ where $ P\left( x_1,x_2,\ldots ,x_n\right) :=\sum_{i=1}^n \frac{1}{x_i+n-1} , $ and find in which circumstances this infimum is attained.

1996 Greece Junior Math Olympiad, 3

Determine the minimum value of the expression $2x^4 - 2x^2y^2 + y^4 - 8x^2 + 18$ where $x, y \in R$.

2016 Hanoi Open Mathematics Competitions, 6

Determine the smallest positive number $a$ such that the number of all integers belonging to $(a, 2016a]$ is $2016$.

1957 Moscow Mathematical Olympiad, 369

Represent $1957$ as the sum of $12$ positive integer summands $a_1, a_2, ... , a_{12}$ for which the number $a_1! \cdot a_2! \cdot a_3! \cdot ... \cdot a_{12}!$ is minimal.

1975 All Soviet Union Mathematical Olympiad, 207

What is the smallest perimeter of the convex $32$-gon, having all the vertices in the nodes of cross-lined paper with the sides of its squares equal to $1$?

2002 Rioplatense Mathematical Olympiad, Level 3, 6

Daniel chooses a positive integer $n$ and tells Ana. With this information, Ana chooses a positive integer $k$ and tells Daniel. Daniel draws $n$ circles on a piece of paper and chooses $k$ different points on the condition that each of them belongs to one of the circles he drew. Then he deletes the circles, and only the $k$ points marked are visible. From these points, Ana must reconstruct at least one of the circumferences that Daniel drew. Determine which is the lowest value of $k$ that allows Ana to achieve her goal regardless of how Daniel chose the $n$ circumferences and the $k$ points.

1984 Tournament Of Towns, (068) T2

A village is constructed in the form of a square, consisting of $9$ blocks , each of side length $\ell$, in a $3 \times 3$ formation . Each block is bounded by a bitumen road . If we commence at a corner of the village, what is the smallest distance we must travel along bitumen roads , if we are to pass along each section of bitumen road at least once and finish at the same corner? (Muscovite folklore)

1995 May Olympiad, 4

Consider a pyramid whose base is an equilateral triangle $BCD$ and whose other faces are triangles isosceles, right at the common vertex $A$. An ant leaves the vertex $B$ arrives at a point $P$ of the $CD$ edge, from there goes to a point $Q$ of the edge $AC$ and returns to point $B$. If the path you made is minimal, how much is the angle $PQA$ ?

1982 All Soviet Union Mathematical Olympiad, 342

What minimal number of numbers from the set $\{1,2,...,1982\}$ should be deleted to provide the property: [i]none of the remained numbers equals to the product of two other remained numbers[/i]?

1973 Putnam, A3

Let $n$ be a fixed positive integer and let $b(n)$ be the minimum value of $$k+\frac{n}{k},$$ where $k$ is allowed to range through all positive integers. Prove that $\lfloor b(n) \rfloor= \lfloor \sqrt{4n+1} \rfloor.$

2017 Puerto Rico Team Selection Test, 5

Let $a, b$ be two real numbers that satisfy $a^3 + b^3 = 8-6ab$. Find the maximum value and the minimum value that $a + b$ can take.

May Olympiad L2 - geometry, 2003.5

An ant, which is on an edge of a cube of side $8$, must travel on the surface and return to the starting point. It's path must contain interior points of the six faces of the cube and should visit only once each face of the cube. Find the length of the path that the ant can carry out and justify why it is the shortest path.

2005 Sharygin Geometry Olympiad, 19

As you know, the moon revolves around the earth. We assume that the Earth and the Moon are points, and the Moon rotates around the Earth in a circular orbit with a period of one revolution per month. The flying saucer is in the plane of the lunar orbit. It can be jumped through the Moon and the Earth - from the old place (point $A$), it instantly appears in the new (at point $A '$) so that either the Moon or the Earth is in the middle of segment $AA'$. Between the jumps, the flying saucer hangs motionless in outer space. 1) Determine the minimum number of jumps a flying saucer will need to jump from any point inside the lunar orbit to any other point inside the lunar orbit. 2) Prove that a flying saucer, using an unlimited number of jumps, can jump from any point inside the lunar orbit to any other point inside the lunar orbit for any period of time, for example, in a second.

1957 Moscow Mathematical Olympiad, 352

Of all parallelograms of a given area find the one with the shortest possible longer diagonal.

2000 Austrian-Polish Competition, 2

In a unit cube, $CG$ is the edge perpendicular to the face $ABCD$. Let $O_1$ be the incircle of square $ABCD$ and $O_2$ be the circumcircle of triangle $BDG$. Determine min$\{XY|X\in O_1,Y\in O_2\}$.

2013 Hanoi Open Mathematics Competitions, 2

The smallest value of the function $f(x) =|x| +\left|\frac{1 - 2013x}{2013 - x}\right|$ where $x \in [-1, 1] $ is: (A): $\frac{1}{2012}$, (B): $\frac{1}{2013}$, (C): $\frac{1}{2014}$, (D): $\frac{1}{2015}$, (E): None of the above.

2007 Chile National Olympiad, 2

Given a $\triangle ABC$, determine which is the circle with the smallest area that contains it.

2006 Hanoi Open Mathematics Competitions, 9

What is the smallest possible value of $x^2 + y^2 - x -y - xy$?

1964 All Russian Mathematical Olympiad, 053

We have to divide a cube onto $k$ non-overlapping tetrahedrons. For what smallest $k$ is it possible?

1981 Tournament Of Towns, (010) 4

Each of $K$ friends simultaneously learns one different item of news. They begin to phone one another to tell them their news. Each conversation lasts exactly one hour, during which time it is possible for two friends to tell each other all of their news. What is the minimum number of hours needed in order for all of the friends to know all of the news? Consider in this problem: (a) $K = 64$. (b) $K = 55$. (c) $K = 100$. (A Andjans, Riga) PS. (a) was the junior problem, (a),(b),(c) the senior one

1963 All Russian Mathematical Olympiad, 032

Given equilateral triangle with the side $l$. What is the minimal length $d$ of a brush (segment), that will paint all the triangle, if its ends are moving along the sides of the triangle.