This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2012 India Regional Mathematical Olympiad, 2

Let $a,b,c$ be positive integers such that $a|b^2, b|c^2$ and $c|a^2$. Prove that $abc|(a+b+c)^{7}$

MMATHS Mathathon Rounds, 2015

[u]Round 5[/u] [b]p13.[/b] You have a $26 \times 26$ grid of squares. Color each randomly with red, yellow, or blue. What is the expected number (to the nearest integer) of $2 \times 2$ squares that are entirely red? [b]p14.[/b] Four snakes are boarding a plane with four seats. Each snake has been assigned to a different seat. The first snake sits in the wrong seat. Any subsequent snake will sit in their assigned seat if vacant, if not, they will choose a random seat that is available. What is the expected number of snakes who sit in their correct seats? [b]p15.[/b] Let $n \ge 1$ be an integer and $a > 0$ a real number. In terms of n, find the number of solutions $(x_1, ..., x_n)$ of the equation $\sum^n_{i=1}(x^2_i + (a - x_i)^2) = na^2$ such that $x_i$ belongs to the interval $[0, a]$ , for $i = 1, 2, . . . , n$. [u]Round 6 [/u] [b]p16.[/b] All roots of $$\prod^{25}_{n=1} \prod^{2n}_{k=0}(-1)^k \cdot x^k = 0$$ are written in the form $r(\cos \phi + i\sin \phi)$ for $i^2 = -1$, $r > 0$, and $0 \le \phi < 2\pi$. What is the smallest positive value of $\phi$ in radians? [b]p17.[/b] Find the sum of the distinct real roots of the equation $$\sqrt[3]{x^2 - 2x + 1} + \sqrt[3]{x^2 - x - 6} = \sqrt[3]{2x^2 - 3x - 5}.$$ [b]p18.[/b] If $a$ and $b$ satisfy the property that $a2^n + b$ is a square for all positive integers $n$, find all possible value(s) of $a$. [u]Round 7 [/u] [b]p19.[/b] Compute $(1 - \cot 19^o)(1 - \cot 26^o)$. [b]p20.[/b] Consider triangle $ABC$ with $AB = 3$, $BC = 5$, and $\angle ABC = 120^o$. Let point $E$ be any point inside $ABC$. The minimum of the sum of the squares of the distances from $E$ to the three sides of $ABC$ can be written in the form $a/b$ , where a and b are natural numbers such that the greatest common divisor of $a$ and $b$ is $1$. Find $a + b$. [b]p21.[/b] Let $m \ne 1$ be a square-free number (an integer – possibly negative – such that no square divides $m$). We denote $Q(\sqrt{m})$ to be the set of all $a + b\sqrt{m}$ where $a$ and $b$ are rational numbers. Now for a fixed $m$, let $S$ be the set of all numbers $x$ in $Q(\sqrt{m})$ such that x is a solution to a polynomial of the form: $x^n + a_1x^{n-1} + .... + a_n = 0$, where $a_0$, $...$, $a_n$ are integers. For many integers m, $S = Z[\frac{m}] = \{a + b\sqrt{m}\}$ where $a$ and $b$ are integers. Give a classification of the integers for which this is not true. (Hint: It is true for $ m = -1$ and $2$.) PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c4h2782002p24434611]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2000 Korea - Final Round, 1

Prove that for any prime $p$, there exist integers $x,y,z,$ and $w$ such that $x^2+y^2+z^2-wp=0$ and $0<w<p$

2019 Purple Comet Problems, 15

Let $a, b, c$, and $d$ be prime numbers with $a \le b \le c \le d > 0$. Suppose $a^2 + 2b^2 + c^2 + 2d^2 = 2(ab + bc - cd + da)$. Find $4a + 3b + 2c + d$.

2022 Kurschak Competition, 2

Let $p$ and $q$ be prime numbers of the form $4k+3$. Suppose that there exist integers $x$ and $y$ such that $x^2-pqy^2=1$. Prove that there exist positive integers $a$ and $b$ such that $|pa^2-qb^2|=1$.

2013 AIME Problems, 6

Find the least positive integer $N$ such that the set of $1000$ consecutive integers beginning with $1000 \cdot N$ contains no square of an integer.

2022 Bolivia Cono Sur TST, P5

Find the sum of all even numbers greater than 100000, that u can make only with the digits 0,2,4,6,8,9 without any digit repeating in any number.

2022 Thailand Mathematical Olympiad, 7

Let $d \geq 2$ be a positive integer. Define the sequence $a_1,a_2,\dots$ by $$a_1=1 \ \text{and} \ a_{n+1}=a_n^d+1 \ \text{for all }n\geq 1.$$ Determine all pairs of positive integers $(p, q)$ such that $a_p$ divides $a_q$.

2001 AIME Problems, 7

Triangle $ABC$ has $AB=21$, $AC=22$, and $BC=20$. Points $D$ and $E$ are located on $\overline{AB}$ and $\overline{AC}$, respectively, such that $\overline{DE}$ is parallel to $\overline{BC}$ and contains the center of the inscribed circle of triangle $ABC$. Then $DE=m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2023-24 IOQM India, 4

Let $x, y$ be positive integers such that $$ x^4=(x-1)\left(y^3-23\right)-1 . $$ Find the maximum possible value of $x+y$.

2010 Postal Coaching, 5

Let $p$ be a prime and $Q(x)$ be a polynomial with integer coefficients such that $Q(0) = 0, \ Q(1) = 1$ and the remainder of $Q(n)$ is either $0$ or $1$ when divided by $p$, for every $n \in \mathbb{N}$. Prove that $Q(x)$ is of degree at least $p - 1$.

2014 Contests, 2

For some positive integers $m,n$, the system $x+y^2 = m$ and $x^2+y = n$ has exactly one integral solution $(x,y)$. Determine all possible values of $m-n$.

1994 IMO Shortlist, 2

Find all ordered pairs $ (m,n)$ where $ m$ and $ n$ are positive integers such that $ \frac {n^3 \plus{} 1}{mn \minus{} 1}$ is an integer.

2017 CMIMC Number Theory, 4

Let $a_1, a_2, a_3, a_4, a_5$ be positive integers such that $a_1, a_2, a_3$ and $a_3, a_4, a_5$ are both geometric sequences and $a_1, a_3, a_5$ is an arithmetic sequence. If $a_3 = 1575$, find all possible values of $\vert a_4 - a_2 \vert$.

2022 Germany Team Selection Test, 2

Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$. Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.

MMPC Part II 1958 - 95, 1965

[b]p1.[/b] For what integers $x$ is it possible to find an integer $y$ such that $$x(x + 1) (x + 2) (x + 3) + 1 = y^2 ?$$ [b]p2.[/b] Two tangents to a circle are parallel and touch the circle at points $A$ and $B$, respectively. A tangent to the circle at any point $X$, other than $A$ or $B$, meets the first tangent at $Y$ and the second tangent at $Z$. Prove $AY \cdot BZ$ is independent of the position of $X$. [b]p3.[/b] If $a, b, c$ are positive real numbers, prove that $$8abc \le (b + c) (c + a) (a + b)$$ by first verifying the relation in the special case when $c = b$. [b]p4.[/b] Solve the equation $$\frac{x^2}{3}+\frac{48}{x^2}=10 \left( \frac{x}{3}-\frac{4}{x}\right)$$ [b]p5.[/b] Tom and Bill live on the same street. Each boy has a package to deliver to the other boy’s house. The two boys start simultaneously from their own homes and meet $600$ yards from Bill's house. The boys continue on their errand and they meet again $700$ yards from Tom's house. How far apart do the boy's live? [b]p6.[/b] A standard set of dominoes consists of $28$ blocks of size $1$ by $2$. Each block contains two numbers from the set $0,1,2,...,6$. We can denote the block containing $2$ and $3$ by $[2, 3]$, which is the same block as $[3, 2]$. The blocks $[0, 0]$, $[1, 1]$,..., $[6, 6]$ are in the set but there are no duplicate blocks. a) Show that it is possible to arrange the twenty-eight dominoes in a line, end-to-end, with adjacent ends matching, e. g., $... [3, 1]$ $[1, 1]$ $[1, 0]$ $[0, 6] ...$ . b) Consider the set of dominoes which do not contain $0$. Show that it is impossible to arrange this set in such a line. c) Generalize the problem and prove your generalization. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1998 India National Olympiad, 6

It is desired to choose $n$ integers from the collection of $2n$ integers, namely, $0,0,1,1,2,2,\ldots,n-1,n-1$ such that the average of these $n$ chosen integers is itself an integer and as minimum as possible. Show that this can be done for each positive integer $n$ and find this minimum value for each $n$.

2002 Tournament Of Towns, 7

Do there exist irrational numbers $a,b$ both greater than $1$, such that $\lfloor{a^m}\rfloor\neq \lfloor{b^n}\rfloor$ for all $m,n\in\mathbb{N}$ ?

2018 Brazil National Olympiad, 5

Consider the sequence in which $a_1 = 1$ and $a_n$ is obtained by juxtaposing the decimal representation of $n$ at the end of the decimal representation of $a_{n-1}$. That is, $a_1 = 1$, $a_2 = 12$, $a_3 = 123$, $\dots$ , $a_9 = 123456789$, $a_{10} = 12345678910$ and so on. Prove that infinitely many numbers of this sequence are multiples of $7$.

2004 USA Team Selection Test, 5

Let $A = (0, 0, 0)$ in 3D space. Define the [i]weight[/i] of a point as the sum of the absolute values of the coordinates. Call a point a [i]primitive lattice point[/i] if all of its coordinates are integers whose gcd is 1. Let square $ABCD$ be an [i]unbalanced primitive integer square[/i] if it has integer side length and also, $B$ and $D$ are primitive lattice points with different weights. Prove that there are infinitely many unbalanced primitive integer squares such that the planes containing the squares are not parallel to each other.

LMT Guts Rounds, 2011

[u]Round 5[/u] [b]p13.[/b] Simplify $\frac11+\frac13+\frac16+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}$. [b]p14.[/b] Given that $x + y = 7$ and $x^2 + y^2 = 29$, what is the sum of the reciprocals of $x$ and $y$? [b]p15.[/b] Consider a rectangle $ABCD$ with side lengths $AB = 3$ and $BC = 4$. If circles are inscribeδ in triangles $ABC$ and $BCD$, how far are the centers of the circles from each other? [u]Round 6[/u] [b]p16.[/b] Evaluate $\frac{2!}{1!} +\frac{3!}{2!} +\frac{4!}{3!} + ... +\frac{99!}{98!}+\frac{100!}{99!}$ . [b]p17.[/b] Let $ABCD$ be a square of side length $2$. A semicircle is drawn with diameter $\overline{AC}$ that passes through point $B$. Find the area of the region inside the semicircle but outside the square. [b]p18.[/b] For how many positive integer values of $k$ is $\frac{37k - 30}{k}$ a positive integer? [u]Round 7[/u] [b]p19.[/b] Two parallel planar slices across a sphere of radius $25$ create cross sections of area $576\pi$ and $225\pi$. What is the maximum possible distance between the two slices? [b]p20.[/b] How many positive integers cannot be expressed in the form $3\ell + 4m + 5t$, where $\ell$, $m$, and $t$ are nonnegative integers? [b]p21.[/b] In April, a fool is someone who is fooled by a classmate. In a class of $30$ students, $14$ people were fooled by someone else and $29$ people fooled someone else. What is the largest positive integer $n$ for which we can guarantee that at least one person was fooled by at least $n$ other people? [u]Round 8[/u] [b]p22.[/b] Let $$S = 4 + \dfrac{12}{4 +\dfrac{ 12}{4 +\dfrac{ 12}{4+ ...}}}.$$ Evaluate $4 +\frac{ 12}{S}.$ [b]p23.[/b] Jonathan is buying bananagram sets for $\$11$ each and flip-flops for $\$17$ each. If he spends $\$227$ on purchases for bananagram sets and flip-flops, what is the total number of bananagram sets and flip-flops he bought? [b]p24.[/b] Alan has a $3 \times 3$ array of squares. He starts removing the squares one at a time such that each time he removes one square, all remaining squares share a side with at least two other remaining squares. What is the maximum number of squares Alan can remove? PS. You should use hide for answers. Rounds 1-4 are [url=https://artofproblemsolving.com/community/c3h2952214p26434209]here[/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3134133p28400917]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 Francophone Mathematical Olympiad, 4

Let $(a_i)_{i\in \mathbb{N}}$ a sequence of positive integers, such that for any finite, non-empty subset $S$ of $\mathbb{N}$, the integer$$\Pi_{k\in S} a_k -1$$is prime. Prove that the number of $a_i$'s with $i\in \mathbb{N}$ such that $a_i$ has less than $m$ distincts prime factors is finite.

2019 Philippine TST, 3

Let $a_1, a_2, a_3,\ldots$ be an infinite sequence of positive integers such that $a_2 \ne 2a_1$, and for all positive integers $m$ and $n$, the sum $m + n$ is a divisor of $a_m + a_n$. Prove that there exists an integer $M$ such that for all $n > M$, we have $a_n \ge n^3$.

2015 Costa Rica - Final Round, 2

A positive natural number $n$ is said to be [i]comico[/i] if its prime factorization is $n = p_1p_2...p_k$, with $k\ge 3$, and also the primes $p_1,..., p_k$ they fulfill that $p_1 + p_2 = c^2_1$ $p_1 + p_2 + p_3 = c^2_2$ $...$ $p_1 + p_2 + ...+ p_n = c^2_{n-1}$ where $c_1, c_2, ..., c_{n-1}$ are positive integers where $c_1$ is not divisible by $7$. Find all comico numbers less than $10,000$.

2016 CMIMC, 4

For some positive integer $n$, consider the usual prime factorization \[n = \displaystyle \prod_{i=1}^{k} p_{i}^{e_{i}}=p_1^{e_1}p_2^{e_2}\ldots p_k^{e_k},\] where $k$ is the number of primes factors of $n$ and $p_{i}$ are the prime factors of $n$. Define $Q(n), R(n)$ by \[ Q(n) = \prod_{i=1}^{k} p_{i}^{p_{i}} \text{ and } R(n) = \prod_{i=1}^{k} e_{i}^{e_{i}}. \] For how many $1 \leq n \leq 70$ does $R(n)$ divide $Q(n)$?