This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 253

2019 CMIMC, 3

Tags: parabola , conic , team
Points $A(0,0)$ and $B(1,1)$ are located on the parabola $y=x^2$. A third point $C$ is positioned on this parabola between $A$ and $B$ such that $AC=CB=r$. What is $r^2$?

2011 Belarus Team Selection Test, 1

$AB$ and $CD$ are two parallel chords of a parabola. Circle $S_1$ passing through points $A,B$ intersects circle $S_2$ passing through $C,D$ at points $E,F$. Prove that if $E$ belongs to the parabola, then $F$ also belongs to the parabola. I.Voronovich

Kvant 2024, M2823

A parabola $p$ is drawn on the coordinate plane — the graph of the equation $y =-x^2$, and a point $A$ is marked that does not lie on the parabola $p$. All possible parabolas $q$ of the form $y = x^2+ax+b$ are drawn through point $A$, intersecting $p$ at two points $X$ and $Y$ . Prove that all possible $XY$ lines pass through a fixed point in the plane. [i]P.A.Kozhevnikov[/i]

1998 All-Russian Olympiad, 1

The angle formed by the rays $y=x$ and $y=2x$ ($x \ge 0$) cuts off two arcs from a given parabola $y=x^2+px+q$. Prove that the projection of one arc onto the $x$-axis is shorter by $1$ than that of the second arc.

2005 AMC 12/AHSME, 8

Tags: conic , parabola
For how many values of $ a$ is it true that the line $ y \equal{} x \plus{} a$ passes through the vertex of the parabola $ y \equal{} x^2 \plus{} a^2$? $ \textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ \text{infinitely many}$

2013 Princeton University Math Competition, 5

Tags: conic , parabola
Suppose $w,x,y,z$ satisfy \begin{align*}w+x+y+z&=25,\\wx+wy+wz+xy+xz+yz&=2y+2z+193\end{align*} The largest possible value of $w$ can be expressed in lowest terms as $w_1/w_2$ for some integers $w_1,w_2>0$. Find $w_1+w_2$.

2008 Harvard-MIT Mathematics Tournament, 6

Determine all real numbers $ a$ such that the inequality $ |x^2 \plus{} 2ax \plus{} 3a|\le2$ has exactly one solution in $ x$.

2025 AIME, 9

The parabola with equation $y = x^2 - 4$ is rotated $60^\circ$ counterclockwise around the origin. The unique point in the fourth quadrant where the original parabola and its image intersect has $y$-coordinate $\frac{a - \sqrt{b}}{c}$, where $a$, $b$, and $c$ are positive integers, and $a$ and $c$ are relatively prime. Find $a + b + c$.

2012 China Second Round Olympiad, 4

Let $F$ be the focus of parabola $y^2=2px(p>0)$, with directrix $l$ and two points $A,B$ on it. Knowing that $\angle AFB=\frac{\pi}{3}$, find the maximal value of $\frac{|MN|}{|AB|}$, where $M$ is the midpoint of $AB$ and $N$ is the projection of $M$ to $l$.

2024 ISI Entrance UGB, P7

Consider a container of the shape obtained by revolving a segment of parabola $x = 1 + y^2$ around the $y$-axis as shown below. The container is initially empty. Water is poured at a constant rate of $1\, \text{cm}^3$ into the container. Let $h(t)$ be the height of water inside container at time $t$. Find the time $t$ when the rate of change of $h(t)$ is maximum.

2009 Stanford Mathematics Tournament, 9

Find the shortest distance between the point $(6,12)$ and the parabola given by the equation $x=\frac{y^2}{2}$

2003 AMC 12-AHSME, 19

A parabola with equation $ y \equal{} ax^2 \plus{} bx \plus{} c$ is reflected about the $ x$-axis. The parabola and its reflection are translated horizontally five units in opposite directions to become the graphs of $ y \equal{} f(x)$ and $ y \equal{} g(x)$, respectively. Which of the following describes the graph of $ y \equal{} (f \plus{} g)(x)$? $ \textbf{(A)}\ \text{a parabola tangent to the }x\text{ \minus{} axis}$ $ \textbf{(B)}\ \text{a parabola not tangent to the }x\text{ \minus{} axis} \qquad \textbf{(C)}\ \text{a horizontal line}$ $ \textbf{(D)}\ \text{a non \minus{} horizontal line} \qquad \textbf{(E)}\ \text{the graph of a cubic function}$

2008 Saint Petersburg Mathematical Olympiad, 1

The graph $y=x^2+ax+b$ intersects any of the two axes at points $A$, $B$, and $C$. The incenter of triangle $ABC$ lies on the line $y=x$. Prove that $a+b+1=0$.

2018 Belarusian National Olympiad, 10.6

The vertices of the convex quadrilateral $ABCD$ lie on the parabola $y=x^2$. It is known that $ABCD$ is cyclic and $AC$ is a diameter of its circumcircle. Let $M$ and $N$ be the midpoints of the diagonals of $AC$ and $BD$ respectively. Find the length of the projection of the segment $MN$ on the axis $Oy$.

1988 All Soviet Union Mathematical Olympiad, 483

A polygonal line with a finite number of segments has all its vertices on a parabola. Any two adjacent segments make equal angles with the tangent to the parabola at their point of intersection. One end of the polygonal line is also on the axis of the parabola. Show that the other vertices of the polygonal line are all on the same side of the axis.

2005 AMC 12/AHSME, 24

All three vertices of an equilateral triangle are on the parabola $ y \equal{} x^2$, and one of its sides has a slope of 2. The x-coordinates of the three vertices have a sum of $ m/n$, where $ m$ and $ n$ are relatively prime positive integers. What is the value of $ m \plus{} n$? $ \textbf{(A)}\ 14\qquad \textbf{(B)}\ 15\qquad \textbf{(C)}\ 16\qquad \textbf{(D)}\ 17\qquad \textbf{(E)}\ 18$

2013 BMT Spring, 8

Tags: conic , geometry , parabola , area
A parabola has focus $F$ and vertex $V$ , where $VF = 1$0. Let $AB$ be a chord of length $100$ that passes through $F$. Determine the area of $\vartriangle VAB$.

2008 Paraguay Mathematical Olympiad, 2

Find for which values of $n$, an integer larger than $1$ but smaller than $100$, the following expression has its minimum value: $S = |n-1| + |n-2| + \ldots + |n-100|$

2011 Romanian Masters In Mathematics, 3

A triangle $ABC$ is inscribed in a circle $\omega$. A variable line $\ell$ chosen parallel to $BC$ meets segments $AB$, $AC$ at points $D$, $E$ respectively, and meets $\omega$ at points $K$, $L$ (where $D$ lies between $K$ and $E$). Circle $\gamma_1$ is tangent to the segments $KD$ and $BD$ and also tangent to $\omega$, while circle $\gamma_2$ is tangent to the segments $LE$ and $CE$ and also tangent to $\omega$. Determine the locus, as $\ell$ varies, of the meeting point of the common inner tangents to $\gamma_1$ and $\gamma_2$. [i](Russia) Vasily Mokin and Fedor Ivlev[/i]

2003 AMC 12-AHSME, 25

Let $ f(x)\equal{}\sqrt{ax^2\plus{}bx}$. For how many real values of $ a$ is there at least one positive value of $ b$ for which the domain of $ f$ and the range of $ f$ are the same set? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \text{infinitely many}$

2011 Tournament of Towns, 4

Does there exist a convex $N$-gon such that all its sides are equal and all vertices belong to the parabola $y = x^2$ for a) $N = 2011$ b) $N = 2012$ ?

2002 National High School Mathematics League, 13

Tags: conic , parabola
$A(0,2)$, and two points $B,C$ on parabola $y^2=x+4$ satisfy that $AB\perp BC$. Find the range value of $y_C$.

2010 ELMO Shortlist, 3

A circle $\omega$ not passing through any vertex of $\triangle ABC$ intersects each of the segments $AB$, $BC$, $CA$ in 2 distinct points. Prove that the incenter of $\triangle ABC$ lies inside $\omega$. [i]Evan O' Dorney.[/i]

2012 Today's Calculation Of Integral, 809

For $a>0$, denote by $S(a)$ the area of the part bounded by the parabolas $y=\frac 12x^2-3a$ and $y=-\frac 12x^2+2ax-a^3-a^2$. Find the maximum area of $S(a)$.

2013 Waseda University Entrance Examination, 1

Given a parabola $C: y^2=4px\ (p>0)$ with focus $F(p,\ 0)$. Let two lines $l_1,\ l_2$ passing through $F$ intersect orthogonaly each other, $C$ intersects with $l_1$ at two points $P_1,\ P_2$ and $C$ intersects with $l_2$ at two points $Q_1,\ Q_2$. Answer the following questions. (1) Set the equation of $l_1$ as $x=ay+p$ and let the coordinates of $P_1,\ P_2$ as $(x_1,\ y_1),\ (x_2,\ y_2)$, respectively. Express $y_1+y_2,\ y_1y_2$ in terms of $a,\ p$. (2) Show that $\frac{1}{P_1P_2}+\frac{1}{Q_1Q_2}$ is constant regardless of way of taking $l_1,\ l_2$.