This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

2015 Greece JBMO TST, 2

Let $ABC$ be an acute triangle inscribed in a circle of center $O$. If the altitudes $BD,CE$ intersect at $H$ and the circumcenter of $\triangle BHC$ is $O_1$, prove that $AHO_1O$ is a parallelogram.

2005 Baltic Way, 12

Let $ABCD$ be a convex quadrilateral such that $BC=AD$. Let $M$ and $N$ be the midpoints of $AB$ and $CD$, respectively. The lines $AD$ and $BC$ meet the line $MN$ at $P$ and $Q$, respectively. Prove that $CQ=DP$.

1996 Turkey Team Selection Test, 2

In a parallelogram $ABCD$ with $\angle A < 90$, the circle with diameter $AC$ intersects the lines $CB$ and $CD$ again at $E$ and $F$ , and the tangent to this circle at $A$ meets the line $BD$ at $P$ . Prove that the points $P$, $E$, $F$ are collinear.

2011 ISI B.Stat Entrance Exam, 5

$ABCD$ is a trapezium such that $AB\parallel DC$ and $\frac{AB}{DC}=\alpha >1$. Suppose $P$ and $Q$ are points on $AC$ and $BD$ respectively, such that \[\frac{AP}{AC}=\frac{BQ}{BD}=\frac{\alpha -1}{\alpha+1}\] Prove that $PQCD$ is a parallelogram.

2022 Korea -Final Round, P1

Let $ABC$ be an acute triangle with circumcenter $O$, and let $D$, $E$, and $F$ be the feet of altitudes from $A$, $B$, and $C$ to sides $BC$, $CA$, and $AB$, respectively. Denote by $P$ the intersection of the tangents to the circumcircle of $ABC$ at $B$ and $C$. The line through $P$ perpendicular to $EF$ meets $AD$ at $Q$, and let $R$ be the foot of the perpendicular from $A$ to $EF$. Prove that $DR$ and $OQ$ are parallel.

2010 Cuba MO, 8

Let $ABCDE$ be a convex pentagon that has $AB < BC$, $AE <ED$ and $AB + CD + EA = BC + DE$. Variable points $F,G$ and $H$ are taken that move on the segments $BC$, $CD$ and $OF$ respectively . $B'$ is defined as the projection of $B$ on $AF$, $C'$ as the projection of $C$ on $FG$, $D'$ as the projection of $D$ on $GH$ and $E'$ as the projection of $E$ onto $HA$. Prove that there is at least one quadrilateral $B'C'D'E'$ when $F,G$ and $H$ move on their sides, which is a parallelogram.

2004 CentroAmerican, 3

$ABC$ is a triangle, and $E$ and $F$ are points on the segments $BC$ and $CA$ respectively, such that $\frac{CE}{CB}+\frac{CF}{CA}=1$ and $\angle CEF=\angle CAB$. Suppose that $M$ is the midpoint of $EF$ and $G$ is the point of intersection between $CM$ and $AB$. Prove that triangle $FEG$ is similar to triangle $ABC$.

2005 Iran Team Selection Test, 2

Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that: \[PX || AC \ , \ PY ||AB \] Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$

2014 Iran Geometry Olympiad (senior), 5:

Two points $P$ and $Q$ lying on side $BC$ of triangle $ABC$ and their distance from the midpoint of $BC$ are equal.The perpendiculars from $P$ and $Q$ to $BC$ intersect $AC$ and $AB$ at $E$ and $F$,respectively.$M$ is point of intersection $PF$ and $EQ$.If $H_1$ and $H_2$ be the orthocenters of triangles $BFP$ and $CEQ$, respectively, prove that $ AM\perp H_1H_2 $. Author:Mehdi E'tesami Fard , Iran

2009 AIME Problems, 5

Triangle $ ABC$ has $ AC \equal{} 450$ and $ BC \equal{} 300$. Points $ K$ and $ L$ are located on $ \overline{AC}$ and $ \overline{AB}$ respectively so that $ AK \equal{} CK$, and $ \overline{CL}$ is the angle bisector of angle $ C$. Let $ P$ be the point of intersection of $ \overline{BK}$ and $ \overline{CL}$, and let $ M$ be the point on line $ BK$ for which $ K$ is the midpoint of $ \overline{PM}$. If $ AM \equal{} 180$, find $ LP$.

2018 Argentina National Olympiad, 6

Let $ABCD$ be a parallelogram. An interior circle of the $ABCD$ is tangent to the lines $AB$ and $AD$ and intersects the diagonal $BD$ at $E$ and $F$. Prove that exists a circle that passes through $E$ and $F$ and is tangent to the lines $CB$ and $CD$.

Durer Math Competition CD Finals - geometry, 2008.C1

Given the parallelogram $ABCD$. The trisection points of side $AB$ are: $H_1, H_2$, ($AH_1 = H_1H_2 =H_2B$). The trisection points of the side $DC$ are $G_1, G_2$, ($DG_1 = G_1G_2 = G_2C$), and $AD = 1, AC = 2$. Prove that triangle $AH_2G_1$ is isosceles.

2019 Oral Moscow Geometry Olympiad, 2

On the side $AC$ of the triangle $ABC$ in the external side is constructed the parallelogram $ACDE$ . Let $O$ be the intersection point of its diagonals, $N$ and $K$ be midpoints of BC and BA respectively. Prove that lines $DK, EN$ and $BO$ intersect at one point.

2006 QEDMO 2nd, 14

On the sides $BC$, $CA$, $AB$ of an acute-angled triangle $ABC$, we erect (outwardly) the squares $BB_aC_aC$, $CC_bA_bA$, $AA_cB_cB$, respectively. On the sides $B_cB_a$ and $C_aC_b$ of the triangles $BB_cB_a$ and $CC_aC_b$, we erect (outwardly) the squares $B_cB_vB_uB_a$ and $C_aC_uC_vC_b$. Prove that $B_uC_u\parallel BC$. [i]Comment.[/i] This problem originates in the 68th Moscow MO 2005, and a solution was posted in http://www.mathlinks.ro/Forum/viewtopic.php?t=30184 . However ingenious this solution is, there is a different one which shows a bit more: $B_uC_u=4\cdot BC$. Darij

2015 PAMO, Problem 6

Let $ABCD$ be a quadrilateral (with non-perpendicular diagonals). The perpendicular from $A$ to $BC$ meets $CD$ at $K$. The perpendicular from $A$ to $CD$ meets $BC$ at $L$. The perpendicular from $C$ to $AB$ meets $AD$ at $M$. The perpendicular from $C$ to $AD$ meets $AB$ at $N$. 1. Prove that $KL$ is parallel to $MN$. 2. Prove that $KLMN$ is a parallelogram if $ABCD$ is cyclic.

2011 India Regional Mathematical Olympiad, 1

Let $ABC$ be an acute angled scalene triangle with circumcentre $O$ and orthocentre $H.$ If $M$ is the midpoint of $BC,$ then show that $AO$ and $HM$ intersect on the circumcircle of $ABC.$

2008 USA Team Selection Test, 7

Let $ ABC$ be a triangle with $ G$ as its centroid. Let $ P$ be a variable point on segment $ BC$. Points $ Q$ and $ R$ lie on sides $ AC$ and $ AB$ respectively, such that $ PQ \parallel AB$ and $ PR \parallel AC$. Prove that, as $ P$ varies along segment $ BC$, the circumcircle of triangle $ AQR$ passes through a fixed point $ X$ such that $ \angle BAG = \angle CAX$.

1997 Brazil National Olympiad, 4

Let $V_n=\sqrt{F_n^2+F_{n+2}^2}$, where $F_n$ is the Fibonacci sequence ($F_1=F_2=1,F_{n+2}=F_{n+1}+F_{n}$) Show that $V_n,V_{n+1},V_{n+2}$ are the sides of a triangle with area $1/2$

2003 Turkey MO (2nd round), 2

Let $ABCD$ be a convex quadrilateral and $K,L,M,N$ be points on $[AB],[BC],[CD],[DA]$, respectively. Show that, \[ \sqrt[3]{s_{1}}+\sqrt[3]{s_{2}}+\sqrt[3]{s_{3}}+\sqrt[3]{s_{4}}\leq 2\sqrt[3]{s} \] where $s_1=\text{Area}(AKN)$, $s_2=\text{Area}(BKL)$, $s_3=\text{Area}(CLM)$, $s_4=\text{Area}(DMN)$ and $s=\text{Area}(ABCD)$.

2019 CMI B.Sc. Entrance Exam, 4

Let $ABCD$ be a parallelogram $.$ Let $O$ be a point in its interior such that $\angle AOB + \angle DOC = 180^{\circ} . $ Show that $,\angle ODC = \angle OBC . $

2018 PUMaC Geometry B, 8

Let $ABCD$ be a parallelogram such that $AB = 35$ and $BC = 28$. Suppose that $BD \perp BC$. Let $\ell_1$ be the reflection of $AC$ across the angle bisector of $\angle BAD$, and let $\ell_2$ be the line through $B$ perpendicular to $CD$. $\ell_1$ and $\ell_2$ intersect at a point $P$. If $PD$ can be expressed in simplest form as $\frac{m}{n}$, find $m + n$.

2006 Portugal MO, 4

In the parallelogram $[ABCD], E$ is the midpoint of $[AD]$ and $F$ the orthogonal projection of $B$ on $[CE]$. Prove that the triangle $[ABF]$ is isosceles. [img]https://1.bp.blogspot.com/-DLmFg8ayEQ4/X4XMohA5TjI/AAAAAAAAMnk/thlIKnNUiCkuu9cg1Aq7Zltz8SenmFWuwCLcBGAsYHQ/s0/2006%2Bportugal%2Bp4.png[/img]

2014 Chile National Olympiad, 2

Consider an $ABCD$ parallelogram of area $1$. Let $E$ be the center of gravity of the triangle $ABC, F$ the center of gravity of the triangle $BCD, G$ the center of gravity of the triangle $CDA$ and $H$ the center of gravity of the triangle $DAB$. Calculate the area of quadrilateral $EFGH$.

1988 ITAMO, 5

Given four non-coplanar points, is it always possible to find a plane such that the orthogonal projections of the points onto the plane are the vertices of a parallelogram? How many such planes are there in general?

1970 IMO Longlists, 11

Let $ABCD$ and $A'B'C'D'$ be two arbitrary squares in the plane that are oriented in the same direction. Prove that the quadrilateral formed by the midpoints of $AA',BB',CC',DD'$ is a square.