This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

1977 Bundeswettbewerb Mathematik, 4

Show that the four perpendiculars dropped from the midpoints of the sides of a cyclic quadrilateral to the respective opposite sides are concurrent. [b]Note by Darij:[/b] A [i]cyclic quadrilateral [/i]is a quadrilateral inscribed in a circle.

2005 Abels Math Contest (Norwegian MO), 3b

In the parallelogram $ABCD$, all sides are equal, and $\angle A = 60^o$. Let $F$ be a point on line $AD, H$ a point on line $DC$, and $G$ a point on diagonal $AC$ such that $DFGH$ is a parallelogram. Show that then $\vartriangle BHF$ is equilateral.

1945 Moscow Mathematical Olympiad, 101

The side $AD$ of a parallelogram $ABCD$ is divided into $n$ equal segments. The nearest to $A$ division point $P$ is connected with $B$. Prove that line $BP$ intersects the diagonal $AC$ at point $Q$ such that $AQ = \frac{AC}{n + 1}$

2011 Olympic Revenge, 1

Let $p, q, r, s, t \in \mathbb{R}^{*}_{+}$ satisfying: i) $p^2 + pq + q^2 = s^2$ ii) $q^2 + qr + r^2 = t^2$ iii) $r^2 + rp + p^2 = s^2 - st + t^2$ Prove that \[\frac{s^2 - st + t^2}{s^2t^2} = \frac{r^2}{q^2t^2} + \frac{p^2}{q^2s^2} - \frac{pr}{q^2ts}\]

2005 Oral Moscow Geometry Olympiad, 4

A sphere can be inscribed into a pyramid, the base of which is a parallelogram. Prove that the sums of the areas of its opposite side faces are equal. (M. Volchkevich)

2020 Poland - Second Round, 3.

Let $M$ be the midpoint of the side $BC$ of a acute triangle $ABC$. Incircle of the triangle $ABM$ is tangent to the side $AB$ at the point $D$. Incircle of the triangle $ACM$ is tangent to the side $AC$ at the point $E$. Let $F$ be the such point, that the quadrilateral $DMEF$ is a parallelogram. Prove that $F$ lies on the bisector of $\angle BAC$.

2019 Dutch IMO TST, 3

Let $ABC$ be an acute angles triangle with $O$ the center of the circumscribed circle. Point $Q$ lies on the circumscribed circle of $\vartriangle BOC$ so that $OQ$ is a diameter. Point $M$ lies on $CQ$ and point $N$ lies internally on line segment $BC$ so that $ANCM$ is a parallelogram. Prove that the circumscribed circle of $\vartriangle BOC$ and the lines $AQ$ and $NM$ pass through the same point.

2013 Balkan MO Shortlist, G2

Let $ABCD$ be a quadrilateral, let $O$ be the intersection point of diagonals $AC$ and $BD$, and let $P$ be the intersection point of sides $AB$ and $CD$. Consider the parallelograms $AODE$ and $BOCF$. Prove that $E, F$ and $P$ are collinear.

2009 Grand Duchy of Lithuania, 4

A triangle $ ABC$ has an obtuse angle at $ B$. The perpindicular at $ B$ to $ AB$ meets $ AC$ at $ D$, and $ |CD| \equal{} |AB|$. Prove that $ |AD|^2 \equal{} |AB|.|BC|$ if and only if $ \angle CBD \equal{} 30^\circ$.

1993 Turkey MO (2nd round), 2

I centered incircle of triangle $ABC$ $(m(\hat{B})=90^\circ)$ touches $\left[AB\right], \left[BC\right], \left[AC\right]$ respectively at $F, D, E$. $\left[CI\right]\cap\left[EF\right]={L}$ and $\left[DL\right]\cap\left[AB\right]=N$. Prove that $\left[AI\right]=\left[ND\right]$.

1966 IMO Shortlist, 37

Show that the four perpendiculars dropped from the midpoints of the sides of a cyclic quadrilateral to the respective opposite sides are concurrent. [b]Note by Darij:[/b] A [i]cyclic quadrilateral [/i]is a quadrilateral inscribed in a circle.

2017 Indonesia MO, 7

Let $ABCD$ be a parallelogram. $E$ and $F$ are on $BC, CD$ respectively such that the triangles $ABE$ and $BCF$ have the same area. Let $BD$ intersect $AE, AF$ at $M, N$ respectively. Prove there exists a triangle whose side lengths are $BM, MN, ND$.

2008 All-Russian Olympiad, 3

A circle $ \omega$ with center $ O$ is tangent to the rays of an angle $ BAC$ at $ B$ and $ C$. Point $ Q$ is taken inside the angle $ BAC$. Assume that point $ P$ on the segment $ AQ$ is such that $ AQ\perp OP$. The line $ OP$ intersects the circumcircles $ \omega_{1}$ and $ \omega_{2}$ of triangles $ BPQ$ and $ CPQ$ again at points $ M$ and $ N$. Prove that $ OM \equal{} ON$.

2012 Iran MO (3rd Round), 1

Fixed points $B$ and $C$ are on a fixed circle $\omega$ and point $A$ varies on this circle. We call the midpoint of arc $BC$ (not containing $A$) $D$ and the orthocenter of the triangle $ABC$, $H$. Line $DH$ intersects circle $\omega$ again in $K$. Tangent in $A$ to circumcircle of triangle $AKH$ intersects line $DH$ and circle $\omega$ again in $L$ and $M$ respectively. Prove that the value of $\frac{AL}{AM}$ is constant. [i]Proposed by Mehdi E'tesami Fard[/i]

2009 Macedonia National Olympiad, 2

Let $O$ be the centre of the incircle of $\triangle ABC$. Points $K,L$ are the intersection points of the circles circumscribed about triangles $BOC,AOC$ respectively with the bisectors of the angles at $A,B$ respectively $(K,L\not= O)$. Also $P$ is the midpoint of segment $KL$, $M$ is the reflection of $O$ with respect to $P$ and $N$ is the reflection of $O$ with respect to line $KL$. Prove that the points $K,L,M$ and $N$ lie on the same circle.

2001 Bundeswettbewerb Mathematik, 3

Let $ ABC$ an acute triangle with circumcircle center $ O.$ The line $ (BO)$ intersects the circumcircle again in $ D,$ and the extension of the altitude from $ A$ intersects the circle in $ E.$ Prove that the quadrilateral $ BECD$ and the triangle $ ABC$ have the same area.

1999 Ukraine Team Selection Test, 11

Let $ABCDEF$ be a convex hexagon such that $BCEF$ is a parallelogram and $ABF$ an equilateral triangle. Given that $BC = 1, AD = 3, CD+DE = 2$, compute the area of $ABCDEF$

Estonia Open Junior - geometry, 2015.2.5

Let $ABC$ be an acute-angled triangle, $H$ the intersection point of its altitudes , and $AA'$ the diameter of the circumcircle of triangle $ABC$. Prove that the quadrilateral $HB A'C$ is a parallelogram.

2007 BAMO, 2

The points of the plane are colored in black and white so that whenever three vertices of a parallelogram are the same color, the fourth vertex is that color, too. Prove that all the points of the plane are the same color.

2009 Oral Moscow Geometry Olympiad, 1

The figure shows a parallelogram and the point $P$ of intersection of its diagonals is marked. Draw a straight line through $P$ so that it breaks the parallelogram into two parts, from which you can fold a rhombus. [img]https://1.bp.blogspot.com/-Df2tIBthcmI/X2ZwIx3R4vI/AAAAAAAAMhQ/8Zkxfq30H8MSCdc66tm33n6jt-QKfGMowCLcBGAsYHQ/s0/2009%2Boral%2Bmoscow%2Bj1.png[/img]

2019 Iran Team Selection Test, 3

Point $P$ lies inside of parallelogram $ABCD$. Perpendicular lines to $PA,PB,PC$ and $PD$ through $A,B,C$ and $D$ construct convex quadrilateral $XYZT$. Prove that $S_{XYZT}\geq 2S_{ABCD}$. [i]Proposed by Siamak Ahmadpour[/i]

2015 ELMO Problems, 3

Let $\omega$ be a circle and $C$ a point outside it; distinct points $A$ and $B$ are selected on $\omega$ so that $\overline{CA}$ and $\overline{CB}$ are tangent to $\omega$. Let $X$ be the reflection of $A$ across the point $B$, and denote by $\gamma$ the circumcircle of triangle $BXC$. Suppose $\gamma$ and $\omega$ meet at $D \neq B$ and line $CD$ intersects $\omega$ at $E \neq D$. Prove that line $EX$ is tangent to the circle $\gamma$. [i]Proposed by David Stoner[/i]

1987 Nordic, 2

Let $ABCD$ be a parallelogram in the plane. We draw two circles of radius $R$, one through the points $A$ and $B$, the other through $B$ and $C$. Let $E$ be the other intersection point of the circles. We assume that $E$ is not a vertex of the parallelogram. Show that the circle passing through $A, D$, and $E$ also has radius $R$.

2007 China Team Selection Test, 1

Let convex quadrilateral $ ABCD$ be inscribed in a circle centers at $ O.$ The opposite sides $ BA,CD$ meet at $ H$, the diagonals $ AC,BD$ meet at $ G.$ Let $ O_{1},O_{2}$ be the circumcenters of triangles $ AGD,BGC.$ $ O_{1}O_{2}$ intersects $ OG$ at $ N.$ The line $ HG$ cuts the circumcircles of triangles $ AGD,BGC$ at $ P,Q$, respectively. Denote by $ M$ the midpoint of $ PQ.$ Prove that $ NO \equal{} NM.$

2022 Czech and Slovak Olympiad III A, 4

Let $ABCD$ be a convex quadrilateral with $AB = BC = CD$ and $P$ its intersection of diagonals. Denote by $O_1$, $O_2$ the circumcenters of triangles $ABP$, $CDP$, respectively. Prove that $O_1BCO_2$ is a parallelogram. [i] (Patrik Bak)[/i]