This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

2014 Contests, 3

Let $B$ and $C$ be two fixed points on a circle centered at $O$ that are not diametrically opposed. Let $A$ be a variable point on the circle distinct from $B$ and $C$ and not belonging to the perpendicular bisector of $BC$. Let $H$ be the orthocenter of $\triangle ABC$, and $M$ and $N$ be the midpoints of the segments $BC$ and $AH$, respectively. The line $AM$ intersects the circle again at $D$, and finally, $NM$ and $OD$ intersect at $P$. Determine the locus of points $P$ as $A$ moves around the circle.

2011 Costa Rica - Final Round, 6

Let $ABC$ be a triangle. The incircle of $ABC$ touches $BC,AC,AB$ at $D,E,F$, respectively. Each pair of the incircles of triangles $AEF, BDF,CED$ has two pair of common external tangents, one of them being one of the sides of $ABC$. Show that the other three tangents divide triangle $DEF$ into three triangles and three parallelograms.

Kyiv City MO 1984-93 - geometry, 1991.9.4

A parallelogram is inscribed in a quadrilateral, two opposite vertices of which are the midpoints of the opposite sides of the quadrilateral. Determine the area of ​​such a parallelogram if the area of ​​the quadrilateral is equal to $S_o$.

2014 Indonesia MO, 3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

2001 District Olympiad, 3

Consider a triangle $\Delta ABC$ and three points $D,E,F$ such that: $B$ and $E$ are on different side of the line $AC$, $C$ and $D$ are on different sides of $AB$, $A$ and $F$ are on the same side of the line $BC$. Also $\Delta ADB \sim \Delta CEA \sim \Delta CFB$. Let $M$ be the middle point of $AF$. Prove that: a)$\Delta BDF \sim \Delta FEC$. b) $M$ is the middle point of $DE$. [i]Dan Branzei[/i]

2020 Brazil EGMO TST, 2

Let $ABC$ be a triangle, the point $E$ is in the segment $AC$, the point $F$ is in the segment $AB$ and $P=BE\cap CF$. Let $D$ be a point such that $AEDF$ is a parallelogram, Prove that $D$ is in the side $BC$, if and only if, the triangle $BPC$ and the quadrilateral $AEPF$ have the same area.

1993 Taiwan National Olympiad, 2

Let $E$ and $F$ are distinct points on the diagonal $AC$ of a parallelogram $ABCD$ . Prove that , if there exists a cricle through $E,F$ tangent to rays $BA,BC$ then there also exists a cricle through $E,F$ tangent to rays $DA,DC$.

2018 Polish Junior MO First Round, 2

Inside parallelogram $ABCD$ is point $P$, such that $PC = BC$. Show that line $BP$ is perpendicular to line which connects middles of sides of line segments $AP$ and $CD$.

2006 China Team Selection Test, 1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

1993 All-Russian Olympiad Regional Round, 10.7

Points $ M,N$ are taken on sides $ BC,CD$ respectively of parallelogram $ ABCD$. Let $ E\equal{}BD\cap AM, F\equal{}BD\cap AN$. Diagonal $ BD$ cuts triangle $ AMN$ into two parts. Prove that these two parts have equal area if and only if the point $ K$ given by $ EK\parallel{}AD, FK\parallel{}AB$ lies on segment $ MN$.

2001 Korea - Final Round, 2

Let $P$ be a given point inside a convex quadrilateral $O_1O_2O_3O_4$. For each $i = 1,2,3,4$, consider the lines $l$ that pass through $P$ and meet the rays $O_iO_{i-1}$ and $O_iO_{i+1}$ (where $O_0 = O_4$ and $O_5 = O_1$) at distinct points $A_i(l)$ and $B_i(l)$, respectively. Denote $f_i(l) = PA_i(l) \cdot PB_i(l)$. Among all such lines $l$, let $l_i$ be the one that minimizes $f_i$. Show that if $l_1 = l_3$ and $l_2 = l_4$, then the quadrilateral $O_1O_2O_3O_4$ is a parallelogram.

2020 Polish Junior MO Second Round, 2.

Let $ABCD$ be the parallelogram, such that angle at vertex $A$ is acute. Perpendicular bisector of the segment $AB$ intersects the segment $CD$ in the point $X$. Let $E$ be the intersection point of the diagonals of the parallelogram $ABCD$. Prove that $XE = \frac{1}{2}AD$.

2005 International Zhautykov Olympiad, 2

Let the circle $ (I; r)$ be inscribed in the triangle $ ABC$. Let $ D$ be the point of contact of this circle with $ BC$. Let $ E$ and $ F$ be the midpoints of $ BC$ and $ AD$, respectively. Prove that the three points $ I$, $ E$, $ F$ are collinear.

2009 IberoAmerican, 3

Let $ C_1$ and $ C_2$ be two congruent circles centered at $ O_1$ and $ O_2$, which intersect at $ A$ and $ B$. Take a point $ P$ on the arc $ AB$ of $ C_2$ which is contained in $ C_1$. $ AP$ meets $ C_1$ at $ C$, $ CB$ meets $ C_2$ at $ D$ and the bisector of $ \angle CAD$ intersects $ C_1$ and $ C_2$ at $ E$ and $ L$, respectively. Let $ F$ be the symmetric point of $ D$ with respect to the midpoint of $ PE$. Prove that there exists a point $ X$ satisfying $ \angle XFL \equal{} \angle XDC \equal{} 30^\circ$ and $ CX \equal{} O_1O_2$. [i] Author: Arnoldo Aguilar (El Salvador)[/i]

1963 Poland - Second Round, 2

In the plane there is a quadrilateral $ ABCD $ and a point $ M $. Construct a parallelogram with center $ M $ and its vertices lying on the lines $ AB $, $ BC $, $ CD $, $ DA $.

1955 AMC 12/AHSME, 48

Given triangle $ ABC$ with medians $ AE$, $ BF$, $ CD$; $ FH$ parallel and equal to $ AE$; $ BH$ and $ HE$ are drawn; $ FE$ extended meets $ BH$ in $ G$. Which one of the following statements is not necessarily correct? $ \textbf{(A)}\ AEHF \text{ is a parallelogram} \qquad \textbf{(B)}\ HE\equal{}HG \\ \textbf{(C)}\ BH\equal{}DC \qquad \textbf{(D)}\ FG\equal{}\frac{3}{4}AB \qquad \textbf{(E)}\ FG\text{ is a median of triangle }BFH$

2011 Purple Comet Problems, 26

The diagram below shows two parallel rows with seven points in the upper row and nine points in the lower row. The points in each row are spaced one unit apart, and the two rows are two units apart. How many trapezoids which are not parallelograms have vertices in this set of $16$ points and have area of at least six square units? [asy] import graph; size(7cm); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); pen dotstyle = black; dot((-2,4),linewidth(6pt) + dotstyle); dot((-1,4),linewidth(6pt) + dotstyle); dot((0,4),linewidth(6pt) + dotstyle); dot((1,4),linewidth(6pt) + dotstyle); dot((2,4),linewidth(6pt) + dotstyle); dot((3,4),linewidth(6pt) + dotstyle); dot((4,4),linewidth(6pt) + dotstyle); dot((-3,2),linewidth(6pt) + dotstyle); dot((-2,2),linewidth(6pt) + dotstyle); dot((-1,2),linewidth(6pt) + dotstyle); dot((0,2),linewidth(6pt) + dotstyle); dot((1,2),linewidth(6pt) + dotstyle); dot((2,2),linewidth(6pt) + dotstyle); dot((3,2),linewidth(6pt) + dotstyle); dot((4,2),linewidth(6pt) + dotstyle); dot((5,2),linewidth(6pt) + dotstyle); [/asy]

2007 Junior Macedonian Mathematical Olympiad, 2

Let $ABCD$ be a parallelogram and let $E$ be a point on the side $AD$, such that $\frac{AE}{ED} = m$. Let $F$ be a point on $CE$, such that $BF \perp CE$, and the point $G$ is symmetrical to $F$ with respect to $AB$. If point $A$ is the circumcenter of triangle $BFG$, find the value of $m$.

2009 USA Team Selection Test, 4

Let $ ABP, BCQ, CAR$ be three non-overlapping triangles erected outside of acute triangle $ ABC$. Let $ M$ be the midpoint of segment $ AP$. Given that $ \angle PAB \equal{} \angle CQB \equal{} 45^\circ$, $ \angle ABP \equal{} \angle QBC \equal{} 75^\circ$, $ \angle RAC \equal{} 105^\circ$, and $ RQ^2 \equal{} 6CM^2$, compute $ AC^2/AR^2$. [i]Zuming Feng.[/i]

1984 Miklós Schweitzer, 8

[b]8.[/b] Among all point lattices on the plane intersecting every closed convex region of unit width, which on's fundamental parallelogram has the largest area? ([b]G.36[/b]) [L. Fejes-Tóth]

2015 NIMO Problems, 6

Let $\triangle ABC$ be a triangle with $BC = 4, CA= 5, AB= 6$, and let $O$ be the circumcenter of $\triangle ABC$. Let $O_b$ and $O_c$ be the reflections of $O$ about lines $CA$ and $AB$ respectively. Suppose $BO_b$ and $CO_c$ intersect at $T$, and let $M$ be the midpoint of $BC$. Given that $MT^2 = \frac{p}{q}$ for some coprime positive integers $p$ and $q$, find $p+q$. [i]Proposed by Sreejato Bhattacharya[/i]

Ukrainian From Tasks to Tasks - geometry, 2016.8

Let $ABCD$ be a convex quadrilateral. It is known that $S_{ABD} = 7$, $S_{BCD}= 5$ and $S_{ABC}= 3$. Inside the quadrilateral mark the point $X$ so that $ABCX$ is a parallelogram. Find $S_{ADX}$ and $S_{BDX}$.

2012 AMC 12/AHSME, 20

A trapezoid has side lengths $3, 5, 7,$ and $11$. The sum of all the possible areas of the trapezoid can be written in the form of $r_1 \sqrt{n_1} + r_2 \sqrt{n_2} + r_3$, where $r_1, r_2,$ and $r_3$ are rational numbers and $n_1$ and $n_2$ are positive integers not divisible by the square of a prime. What is the greatest integer less than or equal to \[r_1 + r_2 + r_3 + n_1 + n_2?\] $ \textbf{(A)}\ 57\qquad\textbf{(B)}\ 59\qquad\textbf{(C)}\ 61\qquad\textbf{(D)}\ 63\qquad\textbf{(E)}\ 65 $

1969 IMO Shortlist, 2

$(BEL 2) (a)$ Find the equations of regular hyperbolas passing through the points $A(\alpha, 0), B(\beta, 0),$ and $C(0, \gamma).$ $(b)$ Prove that all such hyperbolas pass through the orthocenter $H$ of the triangle $ABC.$ $(c)$ Find the locus of the centers of these hyperbolas. $(d)$ Check whether this locus coincides with the nine-point circle of the triangle $ABC.$

2018 Balkan MO Shortlist, G6

In a triangle $ABC$ with $AB=AC$, $\omega$ is the circumcircle and $O$ its center. Let $D$ be a point on the extension of $BA$ beyond $A$. The circumcircle $\omega_{1}$ of triangle $OAD$ intersects the line $AC$ and the circle $\omega$ again at points $E$ and $G$, respectively. Point $H$ is such that $DAEH$ is a parallelogram. Line $EH$ meets circle $\omega_{1}$ again at point $J$. The line through $G$ perpendicular to $GB$ meets $\omega_{1}$ again at point $N$ and the line through $G$ perpendicular to $GJ$ meets $\omega$ again at point $L$. Prove that the points $L, N, H, G$ lie on a circle.