This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 533

Croatia MO (HMO) - geometry, 2011.7

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

2010 National Olympiad First Round, 11

At most how many points with integer coordinates are there over a circle with center of $(\sqrt{20}, \sqrt{10})$ in the $xy$-plane? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{None} $

1990 Baltic Way, 6

Let $ABCD$ be a quadrilateral with $AD = BC$ and $\angle DAB + \angle ABC = 120^\circ$. An equilateral triangle $DPC$ is erected in the exterior of the quadrilateral. Prove that the triangle $APB$ is also equilateral.

2004 AIME Problems, 7

$ABCD$ is a rectangular sheet of paper that has been folded so that corner $B$ is matched with point $B'$ on edge $AD$. The crease is $EF$, where $E$ is on $AB$ and $F$is on $CD$. The dimensions $AE=8$, $BE=17$, and $CF=3$ are given. The perimeter of rectangle $ABCD$ is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(25,0), C=(25,70/3), D=(0,70/3), E=(8,0), F=(22,70/3), Bp=reflect(E,F)*B, Cp=reflect(E,F)*C; draw(F--D--A--E); draw(E--B--C--F, linetype("4 4")); filldraw(E--F--Cp--Bp--cycle, white, black); pair point=( 12.5, 35/3 ); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$B^\prime$", Bp, dir(point--Bp)); label("$C^\prime$", Cp, dir(point--Cp));[/asy]

1990 APMO, 1

Given triangle $ABC$, let $D$, $E$, $F$ be the midpoints of $BC$, $AC$, $AB$ respectively and let $G$ be the centroid of the triangle. For each value of $\angle BAC$, how many non-similar triangles are there in which $AEGF$ is a cyclic quadrilateral?

2008 Romania National Olympiad, 1

Let $ ABC$ be a triangle and the points $ D\in (BC)$, $ E\in (CA)$, $ F\in (AB)$ such that \[ \frac {BD}{DC} \equal{} \frac {CE}{EA} \equal{} \frac {AF}{FB}.\] Prove that if the circumcenters of the triangles $ DEF$ and $ ABC$ coincide then $ ABC$ is equilateral.

2020 Saint Petersburg Mathematical Olympiad, 3.

$BB_1$ is the angle bisector of $\triangle ABC$, and $I$ is its incenter. The perpendicular bisector of segment $AC$ intersects the circumcircle of $\triangle AIC$ at $D$ and $E$. Point $F$ is on the segment $B_1C$ such that $AB_1=CF$.Prove that the four points $B, D, E$ and $F$ are concyclic.

2009 Croatia Team Selection Test, 3

It is given a convex quadrilateral $ ABCD$ in which $ \angle B\plus{}\angle C < 180^0$. Lines $ AB$ and $ CD$ intersect in point E. Prove that $ CD*CE\equal{}AC^2\plus{}AB*AE \leftrightarrow \angle B\equal{} \angle D$

2002 Pan African, 2

$\triangle{AOB}$ is a right triangle with $\angle{AOB}=90^{o}$. $C$ and $D$ are moving on $AO$ and $BO$ respectively such that $AC=BD$. Show that there is a fixed point $P$ through which the perpendicular bisector of $CD$ always passes.

2014 Contests, 1

$ABCD$ is a cyclic quadrilateral, with diagonals $AC,BD$ perpendicular to each other. Let point $F$ be on side $BC$, the parallel line $EF$ to $AC$ intersect $AB$ at point $E$, line $FG$ parallel to $BD$ intersect $CD$ at $G$. Let the projection of $E$ onto $CD$ be $P$, projection of $F$ onto $DA$ be $Q$, projection of $G$ onto $AB$ be $R$. Prove that $QF$ bisects $\angle PQR$.

2019 Oral Moscow Geometry Olympiad, 5

Given the segment $ PQ$ and a circle . A chord $AB$ moves around the circle, equal to $PQ$. Let $T$ be the intersection point of the perpendicular bisectors of the segments $AP$ and $BQ$. Prove that all points of $T$ thus obtained lie on one line.

2013 ITAMO, 5

$ABC$ is an isosceles triangle with $AB=AC$ and the angle in $A$ is less than $60^{\circ}$. Let $D$ be a point on $AC$ such that $\angle{DBC}=\angle{BAC}$. $E$ is the intersection between the perpendicular bisector of $BD$ and the line parallel to $BC$ passing through $A$. $F$ is a point on the line $AC$ such that $FA=2AC$ ($A$ is between $F$ and $C$). Show that $EB$ and $AC$ are parallel and that the perpendicular from $F$ to $AB$, the perpendicular from $E$ to $AC$ and $BD$ are concurrent.

2012 Sharygin Geometry Olympiad, 4

Given triangle $ABC$. Point $M$ is the midpoint of side $BC$, and point $P$ is the projection of $B$ to the perpendicular bisector of segment $AC$. Line $PM$ meets $AB$ in point $Q$. Prove that triangle $QPB$ is isosceles.

2023 India IMO Training Camp, 1

Let $ABC$ be a triangle, and let $D$ be the foot of the $A-$altitude. Points $P, Q$ are chosen on $BC$ such that $DP = DQ = DA$. Suppose $AP$ and $AQ$ intersect the circumcircle of $ABC$ again at $X$ and $Y$. Prove that the perpendicular bisectors of the lines $PX$, $QY$, and $BC$ are concurrent. [i]Proposed by Pranjal Srivastava[/i]

2014 NIMO Problems, 8

Aaron takes a square sheet of paper, with one corner labeled $A$. Point $P$ is chosen at random inside of the square and Aaron folds the paper so that points $A$ and $P$ coincide. He cuts the sheet along the crease and discards the piece containing $A$. Let $p$ be the probability that the remaining piece is a pentagon. Find the integer nearest to $100p$. [i]Proposed by Aaron Lin[/i]

2009 Indonesia TST, 2

Two cirlces $ C_1$ and $ C_2$, with center $ O_1$ and $ O_2$ respectively, intersect at $ A$ and $ B$. Let $ O_1$ lies on $ C_2$. A line $ l$ passes through $ O_1$ but does not pass through $ O_2$. Let $ P$ and $ Q$ be the projection of $ A$ and $ B$ respectively on the line $ l$ and let $ M$ be the midpoint of $ \overline{AB}$. Prove that $ MPQ$ is an isoceles triangle.

2011 Tokio University Entry Examination, 4

Take a point $P\left(\frac 12,\ \frac 14\right)$ on the coordinate plane. Let two points $Q(\alpha ,\ \alpha ^ 2),\ R(\beta ,\ \beta ^2)$ move in such a way that 3 points $P,\ Q,\ R$ form an isosceles triangle with the base $QR$, find the locus of the barycenter $G(X,\ Y)$ of $\triangle{PQR}$. [i]2011 Tokyo University entrance exam[/i]

2010 Contests, 2

$AB$ is a diameter of a circle with center $O$. Let $C$ and $D$ be two different points on the circle on the same side of $AB$, and the lines tangent to the circle at points $C$ and $D$ meet at $E$. Segments $AD$ and $BC$ meet at $F$. Lines $EF$ and $AB$ meet at $M$. Prove that $E,C,M$ and $D$ are concyclic.

2003 National High School Mathematics League, 3

Line passes the focal point $F$ of parabola $y^2=8(x+2)$ with bank angle of $60^{\circ}$ intersects the parabola at $A,B$. Perpendicular bisector of $AB$ intersects $x$-axis at $P$, then the length of $PF$ is $\text{(A)}\frac{16}{3}\qquad\text{(B)}\frac{8}{3}\qquad\text{(C)}\frac{16}{3}\sqrt3\qquad\text{(D)}8\sqrt3$

2001 Tournament Of Towns, 3

Points $X$ and $Y$ are chosen on the sides $AB$ and $BC$ of the triangle $\triangle ABC$. The segments $AY$ and $CX$ intersect at the point $Z$. Given that $AY = YC$ and $AB = ZC$, prove that the points $B$, $X$, $Z$, and $Y$ lie on the same circle.

Geometry Mathley 2011-12, 15.3

Triangle $ABC$ has circumcircle $(O,R)$, and orthocenter $H$. The symmedians through $A,B,C$ meet the perpendicular bisectors of $BC,CA,AB$ at $D,E, F$ respectively. Let $M,N, P$ be the perpendicular projections of H on the line $OD,OE,OF.$ Prove that $$\frac{OH^2}{R^2} =\frac{\overline{OM}}{\overline{OD}}+\frac{\overline{ON}}{\overline{OE}} +\frac{\overline{OP}}{\overline{OF}}$$ Đỗ Thanh Sơn

2005 District Olympiad, 4

In the triangle $ABC$ let $AD$ be the interior angle bisector of $\angle ACB$, where $D\in AB$. The circumcenter of the triangle $ABC$ coincides with the incenter of the triangle $BCD$. Prove that $AC^2 = AD\cdot AB$.

1951 AMC 12/AHSME, 46

$ AB$ is a fixed diameter of a circle whose center is $ O$. From $ C$, any point on the circle, a chord $ CD$ is drawn perpendicular to $ AB$. Then, as $ C$ moves over a semicircle, the bisector of angle $ OCD$ cuts the circle in a point that always: $ \textbf{(A)}\ \text{bisects the arc } AB \qquad\textbf{(B)}\ \text{trisects the arc } AB \qquad\textbf{(C)}\ \text{varies}$ $ \textbf{(D)}\ \text{is as far from }AB \text{ as from } D \qquad\textbf{(E)}\ \text{is equidistant from }B \text{ and } C$

1998 USAMO, 2

Let ${\cal C}_1$ and ${\cal C}_2$ be concentric circles, with ${\cal C}_2$ in the interior of ${\cal C}_1$. From a point $A$ on ${\cal C}_1$ one draws the tangent $AB$ to ${\cal C}_2$ ($B\in {\cal C}_2$). Let $C$ be the second point of intersection of $AB$ and ${\cal C}_1$, and let $D$ be the midpoint of $AB$. A line passing through $A$ intersects ${\cal C}_2$ at $E$ and $F$ in such a way that the perpendicular bisectors of $DE$ and $CF$ intersect at a point $M$ on $AB$. Find, with proof, the ratio $AM/MC$.

2025 Thailand Mathematical Olympiad, 7

Let $ABC$ be a triangle with $AB < AC$. The tangent to the circumcircle of $\triangle ABC$ at $A$ intersects $BC$ at $D$. The angle bisector of $\angle BAC$ intersect $BC$ at $E$. Suppose that the perpendicular bisector of $AE$ intersect $AB, AC$ at $P,Q$, respectively. Show that $$\sqrt{\frac{BP}{CQ}} = \frac{AC \cdot BD}{AB \cdot CD}$$