Found problems: 242
1990 AMC 12/AHSME, 21
Consider a pyramid $P-ABCD$ whose base $ABCD$ is a square and whose vertex $P$ is equidistant from $A$, $B$, $C$, and $D$. If $AB=1$ and $\angle APD=2\theta$ then the volume of the pyramid is
$\text{(A)} \ \frac{\sin \theta}{6} \qquad \text{(B)} \ \frac{\cot \theta}{6} \qquad \text{(C)} \ \frac1{6\sin \theta} \qquad \text{(D)} \ \frac{1-\sin 2\theta}{6} \qquad \text{(E)} \ \frac{\sqrt{\cos 2\theta}}{6\sin \theta}$
2012 District Olympiad, 2
The pyramid $VABCD$ has base the rectangle ABCD, and the side edges are congruent. Prove that the plane $(VCD)$ forms congruent angles with the planes $(VAC)$ and $(BAC)$ if and only if $\angle VAC = \angle BAC $.
1991 National High School Mathematics League, 13
In regular triangular pyramid $P-ABC$, $PO$ is its height, $M$ is the midpoint of $PO$. Draw the plane that passes $AM$ and parallel to $BC$. Now the triangular pyramid is divided into two parts. Find the ratio of their volume.
1976 IMO Longlists, 31
Into every lateral face of a quadrangular pyramid a circle is inscribed. The circles inscribed into adjacent faces are tangent (have one point in common). Prove that the points of contact of the circles with the base of the pyramid lie on a circle.
1998 Brazil Team Selection Test, Problem 1
Let $ABC$ be an acute-angled triangle. Construct three semi-circles, each having a different side of ABC as diameter, and outside $ABC$. The perpendiculars dropped from $A,B,C$ to the opposite sides intersect these semi-circles in points $E,F,G$, respectively. Prove that the hexagon $AGBECF$ can be folded so as to form a pyramid having $ABC$ as base.
Champions Tournament Seniors - geometry, 2008.4
Given a quadrangular pyramid $SABCD$, the basis of which is a convex quadrilateral $ABCD$. It is known that the pyramid can be tangent to a sphere. Let $P$ be the point of contact of this sphere with the base $ABCD$. Prove that $\angle APB + \angle CPD = 180^o$.
1980 Bulgaria National Olympiad, Problem 3
Each diagonal of the base and each lateral edge of a $9$-gonal pyramid is colored either green or red. Show that there must exist a triangle with the vertices at vertices of the pyramid having all three sides of the same color.
2019 Indonesia Juniors, day 2
P6. Determine all integer pairs $(x, y)$ satisfying the following system of equations.
\[ \begin{cases}
x + y - 6 &= \sqrt{2x + y + 1} \\
x^2 - x &= 3y + 5
\end{cases} \]
P7. Determine the sum of all (positive) integers $n \leq 2019$ such that $1^2 + 2^2 + 3^2 + \cdots + n^2$ is an odd number and $1^1 + 2^2 + 3^3 + \cdots + n^n$ is also an odd number.
P8. Two quadrilateral-based pyramids where the length of all its edges are the same, have their bases coincide, forming a new 3D figure called "8-plane" (octahedron). If the volume of such "8-plane" (octahedron) is $a^3\sqrt{2}$ cm$^3$, determine the volume of the largest sphere that can be fit inside such "8-plane" (octahedron).
P9. Six-digit numbers $\overline{ABCDEF}$ with distinct digits are arranged from the digits 1, 2, 3, 4, 5, 6, 7, 8 with the rule that the sum of the first three numbers and the sum of the last three numbers are the same. Determine the probability that such arranged number has the property that either the first or last three digits (might be both) form an arithmetic sequence or a geometric sequence.
[hide=Remarks (Answer spoiled)]It's a bit ambiguous whether the first or last three digits mentioned should be in that order, or not. If it should be in that order, the answer to this problem would be $\frac{1}{9}$, whereas if not, it would be $\frac{1}{3}$. Some of us agree that the correct interpretation should be the latter (which means that it's not in order) and the answer should be $\frac{1}{3}$. However since this is an essay problem, your interpretation can be written in your solution as well and it's left to the judges' discretion to accept your interpretation, or not. This problem is very bashy.[/hide]
P10. $X_n$ denotes the number which is arranged by the digit $X$ written (concatenated) $n$ times. As an example, $2_{(3)} = 222$ and $5_{(2)} = 55$. For $A, B, C \in \{1, 2, \ldots, 9\}$ and $1 \leq n \leq 2019$, determine the number of ordered quadruples $(A, B, C, n)$ satisfying:
\[ A_{(2n)} = 2 \left ( B_{(n)} \right ) + \left ( C_{(n)} \right )^2. \]
1939 Moscow Mathematical Olympiad, 052
Consider a regular pyramid and a perpendicular to its base at an arbitrary point $P$. Prove that the sum of the lengths of the segments connecting $P$ to the intersection points of the perpendicular with the planes of the pyramid’s faces does not depend on the location of $P$.
2019 Yasinsky Geometry Olympiad, p2
The base of the quadrilateral pyramid $SABCD$ lies the $ABCD$ rectangle with the sides $AB = 1$ and $AD =
10$. The edge $SA$ of the pyramid is perpendicular to the base, $SA = 4$. On the edge of $AD$, find a point $M$ such that the perimeter of the triangle of $SMC$ was minimal.
2023 Durer Math Competition Finals, 4
For a given integer $n\geq2$, a pyramid of height $n$ if defined as a collection of $1^2+2^2+\dots+n^2$ stone cubes of equal size stacked in $n$ layers such that the cubes in the $k$-th layer form a square with sidelength $n+1-k$ and every cube (except for the ones in the bottom layer) rests on four cubes in the layer below. Some of the cubes are made of sandstone, some are made of granite. The top cube is made of granite, and to ensure the stability of the piramid, for each granite cube (except for the ones in the bottom layer), at least three out of four of the cubes supporting it have to be granite. What is the minimum possible number of granite cubes in such an arrangement?
1996 All-Russian Olympiad, 3
Show that for $n\ge 5$, a cross-section of a pyramid whose base is a regular $n$-gon cannot be a regular $(n + 1)$-gon.
[i]N. Agakhanov, N. Tereshin[/i]
2004 Tournament Of Towns, 3
The perpendicular projection of a triangular pyramid on some plane has the largest possible area. Prove that this plane is parallel to either a face or two opposite edges of the pyramid.
2008 Harvard-MIT Mathematics Tournament, 9
Consider a circular cone with vertex $ V$, and let $ ABC$ be a triangle inscribed in the base of the cone, such that $ AB$ is a diameter and $ AC \equal{} BC$. Let $ L$ be a point on $ BV$ such that the volume of the cone is 4 times the volume of the tetrahedron $ ABCL$. Find the value of $ BL/LV$.
1952 Miklós Schweitzer, 1
Find all convex polyhedra which have no diagonals (that is, for which every segment connecting two vertices lies on the boundary of the polyhedron).
1997 AMC 12/AHSME, 23
In the figure, polygons $ A$, $ E$, and $ F$ are isosceles right triangles; $ B$, $ C$, and $ D$ are squares with sides of length $ 1$; and $ G$ is an equilateral triangle. The figure can be folded along its edges to form a polyhedron having the polygons as faces. The volume of this polyhedron is
$ \textbf{(A)}\ 1/2\qquad \textbf{(B)}\ 2/3\qquad \textbf{(C)}\ 3/4\qquad \textbf{(D)}\ 5/6\qquad \textbf{(E)}\ 4/3$
[asy]
size(180);
defaultpen(linewidth(.7pt)+fontsize(10pt));
draw((-1,1)--(2,1));
draw((-1,0)--(1,0));
draw((-1,1)--(-1,0));
draw((0,-1)--(0,3));
draw((1,2)--(1,0));
draw((-1,1)--(1,1));
draw((0,2)--(1,2));
draw((0,3)--(1,2));
draw((0,-1)--(2,1));
draw((0,-1)--((0,-1) + sqrt(2)*dir(-15)));
draw(((0,-1) + sqrt(2)*dir(-15))--(1,0));
label("$\textbf{A}$",foot((0,2),(0,3),(1,2)),SW);
label("$\textbf{B}$",midpoint((0,1)--(1,2)));
label("$\textbf{C}$",midpoint((-1,0)--(0,1)));
label("$\textbf{D}$",midpoint((0,0)--(1,1)));
label("$\textbf{E}$",midpoint((1,0)--(2,1)),NW);
label("$\textbf{F}$",midpoint((0,-1)--(1,0)),NW);
label("$\textbf{G}$",midpoint((0,-1)--(1,0)),2SE);[/asy]
2014 All-Russian Olympiad, 2
The sphere $ \omega $ passes through the vertex $S$ of the pyramid $SABC$ and intersects with the edges $SA,SB,SC$ at $A_1,B_1,C_1$ other than $S$. The sphere $ \Omega $ is the circumsphere of the pyramid $SABC$ and intersects with $ \omega $ circumferential, lies on a plane which parallel to the plane $(ABC)$.
Points $A_2,B_2,C_2$ are symmetry points of the points $A_1,B_1,C_1$ respect to midpoints of the edges $SA,SB,SC$ respectively. Prove that the points $A$, $B$, $C$, $A_2$, $B_2$, and $C_2$ lie on a sphere.
1989 Tournament Of Towns, (237) 1
Is it possible to choose a sphere, a triangular pyramid and a plane so that every plane, parallel to the chosen one, intersects the sphere and the pyramid in sections of equal area?
(Problem from Latvia)
1993 National High School Mathematics League, 13
In triangular pyramid $S-ABC$, any two of $SA,SB,SC$ are perpendicular. $M$ is the centre of gravity of $\triangle ABC$. $D$ is the midpoint of $AB$, line $DP//SC$. Prove:
[b](a)[/b] $DP$ and $SM$ intersect.
[b](b)[/b] $DP\cap SM=D'$, then $D'$ is the center of circumsphere of $S-ABC$.
2008 AMC 12/AHSME, 18
Triangle $ ABC$, with sides of length $ 5$, $ 6$, and $ 7$, has one vertex on the positive $ x$-axis, one on the positive $ y$-axis, and one on the positive $ z$-axis. Let $ O$ be the origin. What is the volume of tetrahedron $ OABC$?
$ \textbf{(A)}\ \sqrt{85} \qquad
\textbf{(B)}\ \sqrt{90} \qquad
\textbf{(C)}\ \sqrt{95} \qquad
\textbf{(D)}\ 10 \qquad
\textbf{(E)}\ \sqrt{105}$
2005 Abels Math Contest (Norwegian MO), 1b
In a pyramid, the base is a right-angled triangle with integer sides. The height of the pyramid is also integer. Show that the volume of the pyramid is even.
2004 AMC 10, 7
A grocer stacks oranges in a pyramid-like stack whose rectangular base is $ 5$ oranges by $ 8$ oranges. Each orange above the first level rests in a pocket formed by four oranges in the level below. The stack is completed by a single row of oranges. How many oranges are in the stack?
$ \textbf{(A)}\ 96 \qquad
\textbf{(B)}\ 98 \qquad
\textbf{(C)}\ 100 \qquad
\textbf{(D)}\ 101 \qquad
\textbf{(E)}\ 134$
V Soros Olympiad 1998 - 99 (Russia), 11.4
Given a triangular pyramid in which all the plane angles at one of the vertices are right. It is known that there is a point in space located at a distance of $3$ from the indicated vertex and at distances $\sqrt5, \sqrt6, \sqrt7$ from three other vertices. Find the radius of the sphere circumscribed around this pyramid. (The circumscribed sphere for a pyramid is the sphere containing all its vertices.)
1977 Poland - Second Round, 4
A pyramid with a quadrangular base is given such that each pair of circles inscribed in adjacent faces has a common point. Prove that the touchpoints of these circles with the base of the pyramid lie on one circle.
1979 IMO Longlists, 41
Prove the following statement: There does not exist a pyramid with square base and congruent lateral faces for which the measures of all edges, total area, and volume are integers.