Found problems: 216
2006 Purple Comet Problems, 10
An equilateral triangle with side length $6$ has a square of side length $6$ attached to each of its edges as shown. The distance between the two farthest vertices of this figure (marked $A$ and $B$ in the figure) can be written as $m + \sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$.
[asy]
draw((0,0)--(1,0)--(1/2,sqrt(3)/2)--cycle);
draw((1,0)--(1+sqrt(3)/2,1/2)--(1/2+sqrt(3)/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2));
draw((0,0)--(-sqrt(3)/2,1/2)--(-sqrt(3)/2+1/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2));
dot((-sqrt(3)/2+1/2,1/2+sqrt(3)/2));
label("A", (-sqrt(3)/2+1/2,1/2+sqrt(3)/2), N);
draw((1,0)--(1,-1)--(0,-1)--(0,0));
dot((1,-1));
label("B", (1,-1), SE);
[/asy]
2013 NIMO Problems, 3
In triangle $ABC$, $AB=13$, $BC=14$ and $CA=15$. Segment $BC$ is split into $n+1$ congruent segments by $n$ points. Among these points are the feet of the altitude, median, and angle bisector from $A$. Find the smallest possible value of $n$.
[i]Proposed by Evan Chen[/i]
1993 Greece National Olympiad, 15
Let $\overline{CH}$ be an altitude of $\triangle ABC$. Let $R$ and $S$ be the points where the circles inscribed in the triangles $ACH$ and $BCH$ are tangent to $\overline{CH}$. If $AB = 1995$, $AC = 1994$, and $BC = 1993$, then $RS$ can be expressed as $m/n$, where $m$ and $n$ are relatively prime integers. Find $m + n$
2013 AMC 12/AHSME, 18
Six spheres of radius $1$ are positioned so that their centers are at the vertices of a regular hexagon of side length $2$. The six spheres are internally tangent to a larger sphere whose center is the center of the hexagon. An eighth sphere is externally tangent to the six smaller spheres and internally tangent to the larger sphere. What is the radius of this eighth sphere?
$ \textbf{(A)} \ \sqrt{2} \qquad \textbf{(B)} \ \frac{3}{2} \qquad \textbf{(C)} \ \frac{5}{3} \qquad \textbf{(D)} \ \sqrt{3} \qquad \textbf{(E)} \ 2$
2010 Purple Comet Problems, 23
A disk with radius $10$ and a disk with radius $8$ are drawn so that the distance between their centers is $3$. Two congruent small circles lie in the intersection of the two disks so that they are tangent to each other and to each of the larger circles as shown. The radii of the smaller circles are both $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
size(150);
defaultpen(linewidth(1));
draw(circle(origin,10)^^circle((3,0),8)^^circle((5,15/4),15/4)^^circle((5,-15/4),15/4));
[/asy]
2002 AMC 8, 16
Right isosceles triangles are constructed on the sides of a 3-4-5 right triangle, as shown. A capital letter represents the area of each triangle. Which one of the following is true?
[asy]/* AMC8 2002 #16 Problem */
draw((0,0)--(4,0)--(4,3)--cycle);
draw((4,3)--(-4,4)--(0,0));
draw((-0.15,0.1)--(0,0.25)--(.15,0.1));
draw((0,0)--(4,-4)--(4,0));
draw((4,0.2)--(3.8,0.2)--(3.8,-0.2)--(4,-0.2));
draw((4,0)--(7,3)--(4,3));
draw((4,2.8)--(4.2,2.8)--(4.2,3));
label(scale(0.8)*"$Z$", (0, 3), S);
label(scale(0.8)*"$Y$", (3,-2));
label(scale(0.8)*"$X$", (5.5, 2.5));
label(scale(0.8)*"$W$", (2.6,1));
label(scale(0.65)*"5", (2,2));
label(scale(0.65)*"4", (2.3,-0.4));
label(scale(0.65)*"3", (4.3,1.5));[/asy]
$ \textbf{(A)}\ X\plus{}Z\equal{}W\plus{}Y \qquad \textbf{(B)}\ W\plus{}X\equal{}Z \qquad\textbf{(C)}\ 3X\plus{}4Y\equal{}5Z \qquad $
$\textbf{(D)}\ X\plus{}W\equal{}\frac{1}{2}(Y\plus{}Z) \qquad\textbf{(E)}\ X\plus{}Y\equal{}Z$
2014 AIME Problems, 11
In $\triangle RED, RD =1, \angle DRE = 75^\circ$ and $\angle RED = 45^\circ$. Let $M$ be the midpoint of segment $\overline{RD}$. Point $C$ lies on side $\overline{ED}$ such that $\overline{RC} \perp \overline{EM}$. Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA = AR$. Then $AE = \tfrac{a-\sqrt{b}}{c},$ where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer. Find $a+b+c$.
2012 AMC 10, 12
Point $B$ is due east of point $A$. Point $C$ is due north of point $B$. The distance between points $A$ and $C$ is $10\sqrt{2}$ meters, and $\angle BAC=45^{\circ}$. Point $D$ is $20$ meters due north of point $C$. The distance $AD$ is between which two integers?
$ \textbf{(A)}\ 30\text{ and }31\qquad\textbf{(B)}\ 31\text{ and }32\qquad\textbf{(C)}\ 32\text{ and }33\qquad\textbf{(D)}\ 33\text{ and }34\qquad\textbf{(E)}\ 34\text{ and }35$
1996 AMC 12/AHSME, 28
On a $4 \times 4 \times 3$ rectangular parallelepiped, vertices $A$, $B$, and $C$ are adjacent to vertex $D$. The perpendicular distance from $D$ to the plane containing
$A$, $B$, and $C$ is closest to
$\text{(A)}\ 1.6 \qquad \text{(B)}\ 1.9 \qquad \text{(C)}\ 2.1 \qquad \text{(D)}\ 2.7 \qquad \text{(E)}\ 2.9$
2014 AIME Problems, 1
The $8$ eyelets for the lace of a sneaker all lie on a rectangle, four equally spaced on each of the longer sides. The rectangle has a width of $50$ mm and a length of $80$ mm. There is one eyelet at each vertex of the rectangle. The lace itself must pass between the vertex eyelets along a width side of the rectangle and then crisscross between successive eyelets until it reaches the two eyelets at the other width side of the rectrangle as shown. After passing through these final eyelets, each of the ends of the lace must extend at least $200$ mm farther to allow a knot to be tied. Find the minimum length of the lace in millimeters.
[asy]
size(200);
defaultpen(linewidth(0.7));
path laceL=(-20,-30)..tension 0.75 ..(-90,-135)..(-102,-147)..(-152,-150)..tension 2 ..(-155,-140)..(-135,-40)..(-50,-4)..tension 0.8 ..origin;
path laceR=reflect((75,0),(75,-240))*laceL;
draw(origin--(0,-240)--(150,-240)--(150,0)--cycle,gray);
for(int i=0;i<=3;i=i+1)
{
path circ1=circle((0,-80*i),5),circ2=circle((150,-80*i),5);
unfill(circ1); draw(circ1);
unfill(circ2); draw(circ2);
}
draw(laceL--(150,-80)--(0,-160)--(150,-240)--(0,-240)--(150,-160)--(0,-80)--(150,0)^^laceR,linewidth(1));[/asy]
2006 AIME Problems, 1
In quadrilateral $ABCD, \angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD},$ $AB=18, BC=21,$ and $CD=14.$ Find the perimeter of $ABCD$.
2006 AMC 12/AHSME, 16
Circles with centers $ A$ and $ B$ have radii 3 and 8, respectively. A common internal tangent intersects the circles at $ C$ and $ D$, respectively. Lines $ AB$ and $ CD$ intersect at $ E$, and $ AE \equal{} 5$. What is $ CD$?
[asy]unitsize(2.5mm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
dotfactor=3;
pair A=(0,0), Ep=(5,0), B=(5+40/3,0);
pair M=midpoint(A--Ep);
pair C=intersectionpoints(Circle(M,2.5),Circle(A,3))[1];
pair D=B+8*dir(180+degrees(C));
dot(A);
dot(C);
dot(B);
dot(D);
draw(C--D);
draw(A--B);
draw(Circle(A,3));
draw(Circle(B,8));
label("$A$",A,W);
label("$B$",B,E);
label("$C$",C,SE);
label("$E$",Ep,SSE);
label("$D$",D,NW);[/asy]$ \textbf{(A) } 13\qquad \textbf{(B) } \frac {44}{3}\qquad \textbf{(C) } \sqrt {221}\qquad \textbf{(D) } \sqrt {255}\qquad \textbf{(E) } \frac {55}{3}$
2000 AMC 12/AHSME, 24
If circular arcs $ AC$ and $ BC$ have centers at $ B$ and $ A$, respectively, then there exists a circle tangent to both $ \stackrel{\frown}{AC}$ and $ \stackrel{\frown}{BC}$, and to $ \overline{AB}$. If the length of $ \stackrel{\frown}{BC}$ is $ 12$, then the circumference of the circle is
[asy]unitsize(4cm);
defaultpen(fontsize(8pt)+linewidth(.8pt));
dotfactor=3;
pair O=(0,.375);
pair A=(-.5,0);
pair B=(.5,0);
pair C=shift(-.5,0)*dir(60);
draw(Arc(A,1,0,60));
draw(Arc(B,1,120,180));
draw(A--B);
draw(Circle(O,.375));
dot(A);
dot(B);
dot(C);
label("$A$",A,SW);
label("$B$",B,SE);
label("$C$",C,N);[/asy]$ \textbf{(A)}\ 24 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 26 \qquad \textbf{(D)}\ 27 \qquad \textbf{(E)}\ 28$
2008 AMC 12/AHSME, 9
Points $ A$ and $ B$ are on a circle of radius $ 5$ and $ AB\equal{}6$. Point $ C$ is the midpoint of the minor arc $ AB$. What is the length of the line segment $ AC$?
$ \textbf{(A)}\ \sqrt{10} \qquad
\textbf{(B)}\ \frac{7}{2} \qquad
\textbf{(C)}\ \sqrt{14} \qquad
\textbf{(D)}\ \sqrt{15} \qquad
\textbf{(E)}\ 4$
2001 AIME Problems, 6
Square $ABCD$ is inscribed in a circle. Square $EFGH$ has vertices $E$ and $F$ on $\overline{CD}$ and vertices $G$ and $H$ on the circle. The ratio of the area of square $EFGH$ to the area of square $ABCD$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers and $m<n$. Find $10n+m$.
2010 Princeton University Math Competition, 2
In a rectangular plot of land, a man walks in a very peculiar fashion. Labeling the corners $ABCD$, he starts at $A$ and walks to $C$. Then, he walks to the midpoint of side $AD$, say $A_1$. Then, he walks to the midpoint of side $CD$ say $C_1$, and then the midpoint of $A_1D$ which is $A_2$. He continues in this fashion, indefinitely. The total length of his path if $AB=5$ and $BC=12$ is of the form $a + b\sqrt{c}$. Find $\displaystyle\frac{abc}{4}$.
2003 AMC 8, 21
The area of trapezoid $ ABCD$ is $ 164 \text{cm}^2$. The altitude is $ 8 \text{cm}$, $ AB$ is $ 10 \text{cm}$, and $ CD$ is $ 17 \text{cm}$. What is $ BC$, in centimeters?
[asy]/* AMC8 2003 #21 Problem */
size(4inch,2inch);
draw((0,0)--(31,0)--(16,8)--(6,8)--cycle);
draw((11,8)--(11,0), linetype("8 4"));
draw((11,1)--(12,1)--(12,0));
label("$A$", (0,0), SW);
label("$D$", (31,0), SE);
label("$B$", (6,8), NW);
label("$C$", (16,8), NE);
label("10", (3,5), W);
label("8", (11,4), E);
label("17", (22.5,5), E);[/asy]
$ \textbf{(A)}\ 9\qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 20$
1987 AMC 12/AHSME, 14
$ABCD$ is a square and $M$ and $N$ are the midpoints of $BC$ and $CD$ respectively. Then $\sin \theta=$
[asy]
draw((0,0)--(2,0)--(2,2)--(0,2)--cycle);
draw((0,0)--(2,1));
draw((0,0)--(1,2));
label("A", (0,0), SW);
label("B", (0,2), NW);
label("C", (2,2), NE);
label("D", (2,0), SE);
label("M", (1,2), N);
label("N", (2,1), E);
label("$\theta$", (.5,.5), SW);
[/asy]
$ \textbf{(A)}\ \frac{\sqrt{5}}{5} \qquad\textbf{(B)}\ \frac{3}{5} \qquad\textbf{(C)}\ \frac{\sqrt{10}}{5} \qquad\textbf{(D)}\ \frac{4}{5} \qquad\textbf{(E)}\ \text{none of these} $
1961 AMC 12/AHSME, 36
In triangle $ABC$ the median from $A$ is given perpendicular to the median from $B$. If $BC=7$ and $AC=6$, find the length of $AB$.
${{ \textbf{(A)}\ 4\qquad\textbf{(B)}\ \sqrt{17} \qquad\textbf{(C)}\ 4.25\qquad\textbf{(D)}\ 2\sqrt{5} }\qquad\textbf{(E)}\ 4.5} $
2013 Stanford Mathematics Tournament, 7
A fly and an ant are on one corner of a unit cube. They wish to head to the opposite corner of the cube. The fly can fly through the interior of the cube, while the ant has to walk across the faces of the cube. How much shorter is the fly's path if both insects take the shortest path possible?
2003 AMC 8, 6
Given the areas of the three squares in the figure, what is the area of the interior triangle?
[asy]
real r=22.61986495;
pair A=origin, B=(12,0), C=(12,5);
draw(A--B--C--cycle);
markscalefactor=0.1;
draw(rightanglemark(C, B, A));
draw(scale(12)*shift(0,-1)*unitsquare);
draw(scale(5)*shift(12/5,0)*unitsquare);
draw(scale(13)*rotate(r)*unitsquare);
pair P=shift(0,-1)*(13/sqrt(2) * dir(r+45)), Q=(14.5,1.2), R=(6, -7);
label("169", P, N);
label("25", Q, N);
label("144", R, N);
[/asy]
$ \textbf{(A)}\ 13\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 60\qquad\textbf{(D)}\ 300\qquad\textbf{(E)}\ 1800$
2009 Harvard-MIT Mathematics Tournament, 1
A rectangular piece of paper with side lengths 5 by 8 is folded along the dashed lines shown below, so that the folded flaps just touch at the corners as shown by the dotted lines. Find the area of the resulting trapezoid.
[asy]
size(150);
defaultpen(linewidth(0.8));
draw(origin--(8,0)--(8,5)--(0,5)--cycle,linewidth(1));
draw(origin--(8/3,5)^^(16/3,5)--(8,0),linetype("4 4"));
draw(origin--(4,3)--(8,0)^^(8/3,5)--(4,3)--(16/3,5),linetype("0 4"));
label("$5$",(0,5/2),W);
label("$8$",(4,0),S);
[/asy]
1980 AMC 12/AHSME, 23
Line segments drawn from the vertex opposite the hypotenuse of a right triangle to the points trisecting the hypotenuse have lengths $\sin x$ and $\cos x$, where $x$ is a real number such that $0<x<\frac{\pi}2$. The length of the hypotenuse is
$\text{(A)} \ \frac 43 \qquad \text{(B)} \ \frac 32 \qquad \text{(C)} \ \frac{3\sqrt{5}}{5} \qquad \text{(D)} \ \frac{2\sqrt{5}}{3} \qquad \text{(E)} \ \text{not uniquely determined}$
2006 AMC 12/AHSME, 17
Square $ ABCD$ has side length $ s$, a circle centered at $ E$ has radius $ r$, and $ r$ and $ s$ are both rational. The circle passes through $ D$, and $ D$ lies on $ \overline{BE}$. Point $ F$ lies on the circle, on the same side of $ \overline{BE}$ as $ A$. Segment $ AF$ is tangent to the circle, and $ AF \equal{} \sqrt {9 \plus{} 5\sqrt {2}}$. What is $ r/s$?
[asy]unitsize(6mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=3;
pair B=(0,0), C=(3,0), D=(3,3), A=(0,3);
pair Ep=(3+5*sqrt(2)/6,3+5*sqrt(2)/6);
pair F=intersectionpoints(Circle(A,sqrt(9+5*sqrt(2))),Circle(Ep,5/3))[0];
pair[] dots={A,B,C,D,Ep,F};
draw(A--F);
draw(Circle(Ep,5/3));
draw(A--B--C--D--cycle);
dot(dots);
label("$A$",A,NW);
label("$B$",B,SW);
label("$C$",C,SE);
label("$D$",D,SW);
label("$E$",Ep,E);
label("$F$",F,NW);[/asy]$ \textbf{(A) } \frac {1}{2}\qquad \textbf{(B) } \frac {5}{9}\qquad \textbf{(C) } \frac {3}{5}\qquad \textbf{(D) } \frac {5}{3}\qquad \textbf{(E) } \frac {9}{5}$
2012 AMC 8, 25
A square with area 4 is inscribed in a square with area 5, with one vertex of the smaller square on each side of the larger square. A vertex of the smaller square divides a side of the larger square into two segments, one of length $a$, and the other of length $b$. What is the value of $ab$ ?
[asy]
draw((0,2)--(2,2)--(2,0)--(0,0)--cycle);
draw((0,0.3)--(0.3,2)--(2,1.7)--(1.7,0)--cycle);
label("$a$",(-0.1,0.15));
label("$b$",(-0.1,1.15));
[/asy]
$\textbf{(A)}\hspace{.05in}\dfrac15 \qquad \textbf{(B)}\hspace{.05in}\dfrac25 \qquad \textbf{(C)}\hspace{.05in}\dfrac12 \qquad \textbf{(D)}\hspace{.05in}1 \qquad \textbf{(E)}\hspace{.05in}4 $