This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 216

2010 AMC 8, 19

The two circles pictured have the same center $C$. Chord $\overline{AD}$ is tangent to the inner circle at $B$, $AC$ is $10$, and chord $\overline{AD}$ has length $16$. What is the area between the two circles? [asy] unitsize(45); import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); draw((2,0.15)--(1.85,0.15)--(1.85,0)--(2,0)--cycle); draw(circle((2,1),2.24)); draw(circle((2,1),1)); draw((0,0)--(4,0)); draw((0,0)--(2,1)); draw((2,1)--(2,0)); draw((2,1)--(4,0)); dot((0,0),ds); label("$A$", (-0.19,-0.23),NE*lsf); dot((2,0),ds); label("$B$", (1.97,-0.31),NE*lsf); dot((2,1),ds); label("$C$", (1.96,1.09),NE*lsf); dot((4,0),ds); label("$D$", (4.07,-0.24),NE*lsf); clip((-3.1,-7.72)--(-3.1,4.77)--(11.74,4.77)--(11.74,-7.72)--cycle); [/asy] $ \textbf{(A)}\ 36 \pi \qquad\textbf{(B)}\ 49 \pi\qquad\textbf{(C)}\ 64 \pi\qquad\textbf{(D)}\ 81 \pi\qquad\textbf{(E)}\ 100 \pi $

1961 AMC 12/AHSME, 38

Triangle $ABC$ is inscribed in a semicircle of radius $r$ so that its base $AB$ coincides with diameter $AB$. Point $C$ does not coincide with either $A$ or $B$. Let $s=AC+BC$. Then, for all permissible positions of $C$: $ \textbf{(A)}\ s^2\le8r^2$ $\qquad\textbf{(B)}\ s^2=8r^2$ $\qquad\textbf{(C)}\ s^2 \ge 8r^2$ ${\qquad\textbf{(D)}\ s^2\le4r^2 }$ ${\qquad\textbf{(E)}\ x^2=4r^2 } $

2007 China Team Selection Test, 2

Let $ I$ be the incenter of triangle $ ABC.$ Let $ M,N$ be the midpoints of $ AB,AC,$ respectively. Points $ D,E$ lie on $ AB,AC$ respectively such that $ BD\equal{}CE\equal{}BC.$ The line perpendicular to $ IM$ through $ D$ intersects the line perpendicular to $ IN$ through $ E$ at $ P.$ Prove that $ AP\perp BC.$

2011 Purple Comet Problems, 10

The diagram shows a large circular dart board with four smaller shaded circles each internally tangent to the larger circle. Two of the internal circles have half the radius of the large circle, and are, therefore, tangent to each other. The other two smaller circles are tangent to these circles. If a dart is thrown so that it sticks to a point randomly chosen on the dart board, then the probability that the dart sticks to a point in the shaded area is $\dfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [asy] size(150); defaultpen(linewidth(0.8)); filldraw(circle((0,0.5),.5),gray); filldraw(circle((0,-0.5),.5),gray); filldraw(circle((2/3,0),1/3),gray); filldraw(circle((-2/3,0),1/3),gray); draw(unitcircle); [/asy]

2025 Belarusian National Olympiad, 8.1

In a rectangle $ABCD$ two not intersecting circles $\omega_1$ and $\omega_2$ are drawn such that $\omega_1$ is tangent to $AB$ and $AD$ at points $P$ and $S$ respectively, and $\omega_2$ is tangent to $CB$ and $CD$ at $T$ and $Q$ respectively. It is known that $PQ=11, ST=10, BD=14$. Find the distance between centers of circles $\omega_1$ and $\omega_2$. [i]I. Voronovich[/i]

1987 AMC 12/AHSME, 14

$ABCD$ is a square and $M$ and $N$ are the midpoints of $BC$ and $CD$ respectively. Then $\sin \theta=$ [asy] draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); draw((0,0)--(2,1)); draw((0,0)--(1,2)); label("A", (0,0), SW); label("B", (0,2), NW); label("C", (2,2), NE); label("D", (2,0), SE); label("M", (1,2), N); label("N", (2,1), E); label("$\theta$", (.5,.5), SW); [/asy] $ \textbf{(A)}\ \frac{\sqrt{5}}{5} \qquad\textbf{(B)}\ \frac{3}{5} \qquad\textbf{(C)}\ \frac{\sqrt{10}}{5} \qquad\textbf{(D)}\ \frac{4}{5} \qquad\textbf{(E)}\ \text{none of these} $

1993 AIME Problems, 13

Jenny and Kenny are walking in the same direction, Kenny at 3 feet per second and Jenny at 1 foot per second, on parallel paths that are 200 feet apart. A tall circular building 100 feet in diameter is centered midway between the paths. At the instant when the building first blocks the line of sight between Jenny and Kenny, they are 200 feet apart. Let $t$ be the amount of time, in seconds, before Jenny and Kenny can see each other again. If $t$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?

1984 IMO Shortlist, 9

Let $a, b, c$ be positive numbers with $\sqrt a +\sqrt b +\sqrt c = \frac{\sqrt 3}{2}$. Prove that the system of equations \[\sqrt{y-a}+\sqrt{z-a}=1,\] \[\sqrt{z-b}+\sqrt{x-b}=1,\] \[\sqrt{x-c}+\sqrt{y-c}=1\] has exactly one solution $(x, y, z)$ in real numbers.

2000 IMO Shortlist, 7

Ten gangsters are standing on a flat surface, and the distances between them are all distinct. At twelve o’clock, when the church bells start chiming, each of them fatally shoots the one among the other nine gangsters who is the nearest. At least how many gangsters will be killed?

2013 Princeton University Math Competition, 1

We construct three circles: $O$ with diameter $AB$ and area $12+2x$, $P$ with diameter $AC$ and area $24+x$, and $Q$ with diameter $BC$ and area $108-x$. Given that $C$ is on circle $O$, compute $x$.

1995 AMC 12/AHSME, 28

Two parallel chords in a circle have lengths $10$ and $14$, and the distance between them is $6$. The chord parallel to these chords and midway between them is of length $\sqrt{a}$ where $a$ is [asy] // note: diagram deliberately not to scale -- azjps void htick(pair A, pair B, real r){ D(A--B); D(A-(r,0)--A+(r,0)); D(B-(r,0)--B+(r,0)); } size(120); pathpen = linewidth(0.7); pointpen = black+linewidth(3); real min = -0.6, step = 0.5; pair[] A, B; D(unitcircle); for(int i = 0; i < 3; ++i) { A.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[0]); B.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[1]); D(D(A[i])--D(B[i])); } MP("10",(A[0]+B[0])/2,N); MP("\sqrt{a}",(A[1]+B[1])/2,N); MP("14",(A[2]+B[2])/2,N); htick((B[1].x+0.1,B[0].y),(B[1].x+0.1,B[2].y),0.06); MP("6",(B[1].x+0.1,B[0].y/2+B[2].y/2),E);[/asy] $\textbf{(A)}\ 144 \qquad \textbf{(B)}\ 156 \qquad \textbf{(C)}\ 168 \qquad \textbf{(D)}\ 176 \qquad \textbf{(E)}\ 184$

2009 AMC 10, 10

A flagpole is originally $ 5$ meters tall. A hurricane snaps the flagpole at a point $ x$ meters above the ground so that the upper part, still attached to the stump, touches the ground $ 1$ meter away from the base. What is $ x$? $ \textbf{(A)}\ 2.0 \qquad \textbf{(B)}\ 2.1 \qquad \textbf{(C)}\ 2.2 \qquad \textbf{(D)}\ 2.3 \qquad \textbf{(E)}\ 2.4$

2012 AIME Problems, 4

Ana, Bob, and Cao bike at constant rates of $8.6$ meters per second, $6.2$ meters per second, and $5$ meters per second, respectively. They all begin biking at the same time from the northeast corner of a rectangular field whose longer side runs due west. Ana starts biking along the edge of the field, initially heading west, Bob starts biking along the edge of the field, initially heading south, and Cao bikes in a straight line across the field to a point D on the south edge of the field. Cao arrives at point D at the same time that Ana and Bob arrive at D for the first time. The ratio of the field's length to the field's width to the distance from point D to the southeast corner of the field can be represented as $p : q : r$, where $p$, $q$, and $r$ are positive integers with p and q relatively prime. Find $p + q + r$.

2005 France Team Selection Test, 2

Two right angled triangles are given, such that the incircle of the first one is equal to the circumcircle of the second one. Let $S$ (respectively $S'$) be the area of the first triangle (respectively of the second triangle). Prove that $\frac{S}{S'}\geq 3+2\sqrt{2}$.

2000 National Olympiad First Round, 21

Let $ABCD$ be a cyclic quadrilateral with $|AB|=26$, $|BC|=10$, $m(\widehat{ABD})=45^\circ$,$m(\widehat{ACB})=90^\circ$. What is the area of $\triangle DAC$ ? $ \textbf{(A)}\ 120 \qquad\textbf{(B)}\ 108 \qquad\textbf{(C)}\ 90 \qquad\textbf{(D)}\ 84 \qquad\textbf{(E)}\ 80 $

1966 AMC 12/AHSME, 6

$AB$ is the diameter of a circle centered at $O$. $C$ is a point on the circle such that angle $BOC$ is $60^\circ$. If the diameter of the circle is $5$ inches, the length of chord $AC$, expressed in inches, is: $\text{(A)} \ 3 \qquad \text{(B)} \ \frac{5\sqrt{2}}{2} \qquad \text{(C)} \frac{5\sqrt3}{2} \ \qquad \text{(D)} \ 3\sqrt3 \qquad \text{(E)} \ \text{none of these}$

2014 Online Math Open Problems, 17

Let $AXYBZ$ be a convex pentagon inscribed in a circle with diameter $\overline{AB}$. The tangent to the circle at $Y$ intersects lines $BX$ and $BZ$ at $L$ and $K$, respectively. Suppose that $\overline{AY}$ bisects $\angle LAZ$ and $AY=YZ$. If the minimum possible value of \[ \frac{AK}{AX} + \left( \frac{AL}{AB} \right)^2 \] can be written as $\tfrac{m}{n} + \sqrt{k}$, where $m$, $n$ and $k$ are positive integers with $\gcd(m,n)=1$, compute $m+10n+100k$. [i]Proposed by Evan Chen[/i]

1984 AMC 12/AHSME, 17

A right triangle $ABC$ with hypotenuse $AB$ has side $AC = 15$. Altitude $CH$ divides $AB$ into segments $AH$ And $HB$, with $HB = 16$. The area of $\triangle ABC$ is: [asy] size(200); defaultpen(linewidth(0.8)+fontsize(11pt)); pair A = origin, H = (5,0), B = (13,0), C = (5,6.5); draw(C--A--B--C--H^^rightanglemark(C,H,B,16)); label("$A$",A,W); label("$B$",B,E); label("$C$",C,N); label("$H$",H,S); label("$15$",C/2,NW); label("$16$",(H+B)/2,S); [/asy] $\textbf{(A) }120\qquad \textbf{(B) }144\qquad \textbf{(C) }150\qquad \textbf{(D) }216\qquad \textbf{(E) }144\sqrt5$

2006 AMC 10, 23

Circles with centers $ A$ and $ B$ have radii 3 and 8, respectively. A common internal tangent intersects the circles at $ C$ and $ D$, respectively. Lines $ AB$ and $ CD$ intersect at $ E$, and $ AE \equal{} 5$. What is $ CD$? [asy]unitsize(2.5mm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair A=(0,0), Ep=(5,0), B=(5+40/3,0); pair M=midpoint(A--Ep); pair C=intersectionpoints(Circle(M,2.5),Circle(A,3))[1]; pair D=B+8*dir(180+degrees(C)); dot(A); dot(C); dot(B); dot(D); draw(C--D); draw(A--B); draw(Circle(A,3)); draw(Circle(B,8)); label("$A$",A,W); label("$B$",B,E); label("$C$",C,SE); label("$E$",Ep,SSE); label("$D$",D,NW);[/asy]$ \textbf{(A) } 13\qquad \textbf{(B) } \frac {44}{3}\qquad \textbf{(C) } \sqrt {221}\qquad \textbf{(D) } \sqrt {255}\qquad \textbf{(E) } \frac {55}{3}$

1995 AMC 12/AHSME, 26

In the figure, $\overline{AB}$ and $\overline{CD}$ are diameters of the circle with center $O$, $\overline{AB} \perp \overline{CD}$, and chord $\overline{DF}$ intersects $\overline{AB}$ at $E$. If $DE = 6$ and $EF = 2$, then the area of the circle is [asy] size(120); defaultpen(linewidth(0.7)); pair O=origin, A=(-5,0), B=(5,0), C=(0,5), D=(0,-5), F=5*dir(40), E=intersectionpoint(A--B, F--D); draw(Circle(O, 5)); draw(A--B^^C--D--F); dot(O^^A^^B^^C^^D^^E^^F); markscalefactor=0.05; draw(rightanglemark(B, O, D)); label("$A$", A, dir(O--A)); label("$B$", B, dir(O--B)); label("$C$", C, dir(O--C)); label("$D$", D, dir(O--D)); label("$F$", F, dir(O--F)); label("$O$", O, NW); label("$E$", E, SE);[/asy] $\textbf{(A)}\ 23\pi \qquad \textbf{(B)}\ \dfrac{47}{2}\pi \qquad \textbf{(C)}\ 24\pi \qquad \textbf{(D)}\ \dfrac{49}{2}\pi \qquad \textbf{(E)}\ 25\pi$

2013 AMC 10, 22

Six spheres of radius $1$ are positioned so that their centers are at the vertices of a regular hexagon of side length $2$. The six spheres are internally tangent to a larger sphere whose center is the center of the hexagon. An eighth sphere is externally tangent to the six smaller spheres and internally tangent to the larger sphere. What is the radius of this eighth sphere? $ \textbf{(A)} \ \sqrt{2} \qquad \textbf{(B)} \ \frac{3}{2} \qquad \textbf{(C)} \ \frac{5}{3} \qquad \textbf{(D)} \ \sqrt{3} \qquad \textbf{(E)} \ 2$

1972 IMO Longlists, 43

A fixed point $A$ inside a circle is given. Consider all chords $XY$ of the circle such that $\angle XAY$ is a right angle, and for all such chords construct the point $M$ symmetric to $A$ with respect to $XY$ . Find the locus of points $M$.

2003 AMC 8, 6

Given the areas of the three squares in the figure, what is the area of the interior triangle? [asy] real r=22.61986495; pair A=origin, B=(12,0), C=(12,5); draw(A--B--C--cycle); markscalefactor=0.1; draw(rightanglemark(C, B, A)); draw(scale(12)*shift(0,-1)*unitsquare); draw(scale(5)*shift(12/5,0)*unitsquare); draw(scale(13)*rotate(r)*unitsquare); pair P=shift(0,-1)*(13/sqrt(2) * dir(r+45)), Q=(14.5,1.2), R=(6, -7); label("169", P, N); label("25", Q, N); label("144", R, N); [/asy] $ \textbf{(A)}\ 13\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 60\qquad\textbf{(D)}\ 300\qquad\textbf{(E)}\ 1800$

2013 AMC 8, 23

Angle $ABC$ of $\triangle ABC$ is a right angle. The sides of $\triangle ABC$ are the diameters of semicircles as shown. The area of the semicircle on $\overline{AB}$ equals $8\pi$, and the arc of the semicircle on $\overline{AC}$ has length $8.5\pi$. What is the radius of the semicircle on $\overline{BC}$? [asy] import graph; draw((0,8)..(-4,4)..(0,0)--(0,8)); draw((0,0)..(7.5,-7.5)..(15,0)--(0,0)); real theta = aTan(8/15); draw(arc((15/2,4),17/2,-theta,180-theta)); draw((0,8)--(15,0)); label("$A$", (0,8), NW); label("$B$", (0,0), SW); label("$C$", (15,0), SE);[/asy] $\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 7.5 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 8.5 \qquad \textbf{(E)}\ 9$

2008 AMC 10, 10

Points $ A$ and $ B$ are on a circle of radius $ 5$ and $ AB\equal{}6$. Point $ C$ is the midpoint of the minor arc $ AB$. What is the length of the line segment $ AC$? $ \textbf{(A)}\ \sqrt{10} \qquad \textbf{(B)}\ \frac{7}{2} \qquad \textbf{(C)}\ \sqrt{14} \qquad \textbf{(D)}\ \sqrt{15} \qquad \textbf{(E)}\ 4$