This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

1993 National High School Mathematics League, 7

Equation $(1-\text{i})x^2+(\lambda+\text{i})x+(1+\text{i}\lambda)=0(\lambda\in\mathbb{R})$ has two imaginary roots, then the range value of $\lambda$ is________.

2020 Tuymaada Olympiad, 5

Coordinate axes (without any marks, with the same scale) and the graph of a quadratic trinomial $y = x^2 + ax + b$ are drawn in the plane. The numbers $a$ and $b$ are not known. How to draw a unit segment using only ruler and compass?

2005 Balkan MO, 2

Find all primes $p$ such that $p^2-p+1$ is a perfect cube.

1988 Canada National Olympiad, 1

For what real values of $k$ do $1988x^2 + kx + 8891$ and $8891x^2 + kx + 1988$ have a common zero?

2014 Harvard-MIT Mathematics Tournament, 6

Given $w$ and $z$ are complex numbers such that $|w+z|=1$ and $|w^2+z^2|=14$, find the smallest possible value of $|w^3+z^3|$. Here $| \cdot |$ denotes the absolute value of a complex number, given by $|a+bi|=\sqrt{a^2+b^2}$ whenever $a$ and $b$ are real numbers.

2010 Contests, 2

Two polynomials $P(x)=x^4+ax^3+bx^2+cx+d$ and $Q(x)=x^2+px+q$ have real coefficients, and $I$ is an interval on the real line of length greater than $2$. Suppose $P(x)$ and $Q(x)$ take negative values on $I$, and they take non-negative values outside $I$. Prove that there exists a real number $x_0$ such that $P(x_0)<Q(x_0)$.

2009 AMC 12/AHSME, 11

Tags: quadratic
The figures $ F_1$, $ F_2$, $ F_3$, and $ F_4$ shown are the first in a sequence of figures. For $ n\ge3$, $ F_n$ is constructed from $ F_{n \minus{} 1}$ by surrounding it with a square and placing one more diamond on each side of the new square than $ F_{n \minus{} 1}$ had on each side of its outside square. For example, figure $ F_3$ has $ 13$ diamonds. How many diamonds are there in figure $ F_{20}$? [asy]unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); path d=(1/2,0)--(0,sqrt(3)/2)--(-1/2,0)--(0,-sqrt(3)/2)--cycle; marker m=marker(scale(5)*d,Fill); path f1=(0,0); path f2=(0,0)--(-1,1)--(1,1)--(1,-1)--(-1,-1); path[] g2=(-1,1)--(-1,-1)--(0,0)^^(1,-1)--(0,0)--(1,1); path f3=f2--(-2,-2)--(-2,0)--(-2,2)--(0,2)--(2,2)--(2,0)--(2,-2)--(0,-2); path[] g3=g2^^(-2,-2)--(0,-2)^^(2,-2)--(1,-1)^^(1,1)--(2,2)^^(-1,1)--(-2,2); path[] f4=f3^^(-3,-3)--(-3,-1)--(-3,1)--(-3,3)--(-1,3)--(1,3)--(3,3)-- (3,1)--(3,-1)--(3,-3)--(1,-3)--(-1,-3); path[] g4=g3^^(-2,-2)--(-3,-3)--(-1,-3)^^(3,-3)--(2,-2)^^(2,2)--(3,3)^^ (-2,2)--(-3,3); draw(f1,m); draw(shift(5,0)*f2,m); draw(shift(5,0)*g2); draw(shift(12,0)*f3,m); draw(shift(12,0)*g3); draw(shift(21,0)*f4,m); draw(shift(21,0)*g4); label("$F_1$",(0,-4)); label("$F_2$",(5,-4)); label("$F_3$",(12,-4)); label("$F_4$",(21,-4));[/asy]$ \textbf{(A)}\ 401 \qquad \textbf{(B)}\ 485 \qquad \textbf{(C)}\ 585 \qquad \textbf{(D)}\ 626 \qquad \textbf{(E)}\ 761$

2010 All-Russian Olympiad Regional Round, 9.1

Three quadratic polynomials $f_1(x) = x^2+2a_1x+b_1$, $f_2(x) = x^2+2a_2x+b_2$, $f_3(x) = x^2 + 2a_3x + b_3$ are such that $a_1a_2a_3 = b_1b_2b_3 > 1$. Prove that at least one polynomial has two distinct roots.

1988 IMO Shortlist, 22

Let $ p$ be the product of two consecutive integers greater than 2. Show that there are no integers $ x_1, x_2, \ldots, x_p$ satisfying the equation \[ \sum^p_{i \equal{} 1} x^2_i \minus{} \frac {4}{4 \cdot p \plus{} 1} \left( \sum^p_{i \equal{} 1} x_i \right)^2 \equal{} 1 \] [b]OR[/b] Show that there are only two values of $ p$ for which there are integers $ x_1, x_2, \ldots, x_p$ satisfying \[ \sum^p_{i \equal{} 1} x^2_i \minus{} \frac {4}{4 \cdot p \plus{} 1} \left( \sum^p_{i \equal{} 1} x_i \right)^2 \equal{} 1 \]

2005 AIME Problems, 12

Square $ABCD$ has center $O$, $AB=900$, $E$ and $F$ are on $AB$ with $AE<BF$ and $E$ between $A$ and $F$, $m\angle EOF =45^\circ$, and $EF=400$. Given that $BF=p+q\sqrt{r}$, wherer $p,q,$ and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.

2008 ITest, 7

Find the number of integers $n$ for which $n^2+10n<2008$.

2015 Romania National Olympiad, 2

A quadratic function has the property that for any interval of length $ 1, $ the length of its image is at least $ 1. $ Show that for any interval of length $ 2, $ the length of its image is at least $ 4. $

2010 Contests, 1

Solve in the integers the diophantine equation $$x^4-6x^2+1 = 7 \cdot 2^y.$$

2001 JBMO ShortLists, 4

The discriminant of the equation $x^2-ax+b=0$ is the square of a rational number and $a$ and $b$ are integers. Prove that the roots of the equation are integers.

2002 AMC 10, 18

For how many positive integers $n$ is $n^3-8n^2+20n-13$ a prime number? $\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }\text{more than 4}$

2006 AMC 12/AHSME, 24

Let $ S$ be the set of all points $ (x,y)$ in the coordinate plane such that $ 0\le x\le \frac \pi2$ and $ 0\le y\le \frac \pi2$. What is the area of the subset of $ S$ for which \[ \sin^2 x \minus{} \sin x\sin y \plus{} \sin^2 y\le \frac 34? \]$ \textbf{(A) } \frac {\pi^2}9 \qquad \textbf{(B) } \frac {\pi^2}8 \qquad \textbf{(C) } \frac {\pi^2}6\qquad \textbf{(D) } \frac {3\pi^2}{16} \qquad \textbf{(E) } \frac {2\pi^2}9$

2005 India National Olympiad, 3

Tags: quadratic , vieta , algebra
Let $p, q, r$ be positive real numbers, not all equal, such that some two of the equations \begin{eqnarray*} px^2 + 2qx + r &=& 0 \\ qx^2 + 2rx + p &=& 0 \\ rx^2 + 2px + q &=& 0 . \\ \end{eqnarray*} have a common root, say $\alpha$. Prove that $a)$ $\alpha$ is real and negative; $b)$ the remaining third quadratic equation has non-real roots.

2007 JBMO Shortlist, 5

Prove that if $ p$ is a prime number, then $ 7p+3^{p}-4$ is not a perfect square.

1961 AMC 12/AHSME, 22

If $3x^3-9x^2+kx-12$ is divisible by $x-3$, then it is also divisible by: ${{ \textbf{(A)}\ 3x^2-x+4 \qquad\textbf{(B)}\ 3x^2-4 \qquad\textbf{(C)}\ 3x^2+4 \qquad\textbf{(D)}\ 3x-4 }\qquad\textbf{(E)}\ 3x+4 } $

2005 AMC 10, 10

Tags: quadratic
There are two values of $ a$ for which the equation $ 4x^2 \plus{} ax \plus{} 8x \plus{} 9 \equal{} 0$ has only one solution for $ x$. What is the sum of these values of $ a$? $ \textbf{(A)}\ \minus{}16\qquad \textbf{(B)}\ \minus{}8\qquad \textbf{(C)}\ 0\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 20$

2007 Junior Balkan MO, 1

Let $a$ be positive real number such that $a^{3}=6(a+1)$. Prove that the equation $x^{2}+ax+a^{2}-6=0$ has no real solution.

2006 National Olympiad First Round, 11

Tags: quadratic
What is the sum of the real roots of the equation $4x^4-3x^2+7x-3=0$? $ \textbf{(A)}\ -1 \qquad\textbf{(B)}\ -2 \qquad\textbf{(C)}\ -3 \qquad\textbf{(D)}\ -4 \qquad\textbf{(E)}\ \text {None of above} $

2020 Indonesia MO, 2

Problem 2. Let $P(x) = ax^2 + bx + c$ where $a, b, c$ are real numbers. If $$P(a) = bc, \hspace{0.5cm} P(b) = ac, \hspace{0.5cm} P(c) = ab$$ then prove that $$(a - b)(b - c)(c - a)(a + b + c) = 0.$$

1992 China Team Selection Test, 3

For any prime $p$, prove that there exists integer $x_0$ such that $p | (x^2_0 - x_0 + 3)$ $\Leftrightarrow$ there exists integer $y_0$ such that $p | (y^2_0 - y_0 + 25).$

1985 AIME Problems, 4

A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly 1/1985. [asy] size(200); pair A=(0,1), B=(1,1), C=(1,0), D=origin; draw(A--B--C--D--A--(1,1/6)); draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1)); pair point=( 0.5 , 0.5 ); //label("$A$", A, dir(point--A)); //label("$B$", B, dir(point--B)); //label("$C$", C, dir(point--C)); //label("$D$", D, dir(point--D)); label("$1/n$", (11/12,1), N, fontsize(9));[/asy]