Found problems: 1148
1993 National High School Mathematics League, 7
Equation $(1-\text{i})x^2+(\lambda+\text{i})x+(1+\text{i}\lambda)=0(\lambda\in\mathbb{R})$ has two imaginary roots, then the range value of $\lambda$ is________.
2020 Tuymaada Olympiad, 5
Coordinate axes (without any marks, with the same scale) and the graph of a quadratic trinomial $y = x^2 + ax + b$ are drawn in the plane. The numbers $a$ and $b$ are not known. How to draw a unit segment using only ruler and compass?
2005 Balkan MO, 2
Find all primes $p$ such that $p^2-p+1$ is a perfect cube.
1988 Canada National Olympiad, 1
For what real values of $k$ do $1988x^2 + kx + 8891$ and $8891x^2 + kx + 1988$ have a common zero?
2014 Harvard-MIT Mathematics Tournament, 6
Given $w$ and $z$ are complex numbers such that $|w+z|=1$ and $|w^2+z^2|=14$, find the smallest possible value of $|w^3+z^3|$. Here $| \cdot |$ denotes the absolute value of a complex number, given by $|a+bi|=\sqrt{a^2+b^2}$ whenever $a$ and $b$ are real numbers.
2010 Contests, 2
Two polynomials $P(x)=x^4+ax^3+bx^2+cx+d$ and $Q(x)=x^2+px+q$ have real coefficients, and $I$ is an interval on the real line of length greater than $2$. Suppose $P(x)$ and $Q(x)$ take negative values on $I$, and they take non-negative values outside $I$. Prove that there exists a real number $x_0$ such that $P(x_0)<Q(x_0)$.
2009 AMC 12/AHSME, 11
The figures $ F_1$, $ F_2$, $ F_3$, and $ F_4$ shown are the first in a sequence of figures. For $ n\ge3$, $ F_n$ is constructed from $ F_{n \minus{} 1}$ by surrounding it with a square and placing one more diamond on each side of the new square than $ F_{n \minus{} 1}$ had on each side of its outside square. For example, figure $ F_3$ has $ 13$ diamonds. How many diamonds are there in figure $ F_{20}$?
[asy]unitsize(3mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
path d=(1/2,0)--(0,sqrt(3)/2)--(-1/2,0)--(0,-sqrt(3)/2)--cycle;
marker m=marker(scale(5)*d,Fill);
path f1=(0,0);
path f2=(0,0)--(-1,1)--(1,1)--(1,-1)--(-1,-1);
path[] g2=(-1,1)--(-1,-1)--(0,0)^^(1,-1)--(0,0)--(1,1);
path f3=f2--(-2,-2)--(-2,0)--(-2,2)--(0,2)--(2,2)--(2,0)--(2,-2)--(0,-2);
path[] g3=g2^^(-2,-2)--(0,-2)^^(2,-2)--(1,-1)^^(1,1)--(2,2)^^(-1,1)--(-2,2);
path[] f4=f3^^(-3,-3)--(-3,-1)--(-3,1)--(-3,3)--(-1,3)--(1,3)--(3,3)--
(3,1)--(3,-1)--(3,-3)--(1,-3)--(-1,-3);
path[] g4=g3^^(-2,-2)--(-3,-3)--(-1,-3)^^(3,-3)--(2,-2)^^(2,2)--(3,3)^^
(-2,2)--(-3,3);
draw(f1,m);
draw(shift(5,0)*f2,m);
draw(shift(5,0)*g2);
draw(shift(12,0)*f3,m);
draw(shift(12,0)*g3);
draw(shift(21,0)*f4,m);
draw(shift(21,0)*g4);
label("$F_1$",(0,-4));
label("$F_2$",(5,-4));
label("$F_3$",(12,-4));
label("$F_4$",(21,-4));[/asy]$ \textbf{(A)}\ 401 \qquad \textbf{(B)}\ 485 \qquad \textbf{(C)}\ 585 \qquad \textbf{(D)}\ 626 \qquad \textbf{(E)}\ 761$
2010 All-Russian Olympiad Regional Round, 9.1
Three quadratic polynomials $f_1(x) = x^2+2a_1x+b_1$, $f_2(x) = x^2+2a_2x+b_2$,
$f_3(x) = x^2 + 2a_3x + b_3$ are such that $a_1a_2a_3 = b_1b_2b_3 > 1$. Prove that at
least one polynomial has two distinct roots.
1988 IMO Shortlist, 22
Let $ p$ be the product of two consecutive integers greater than 2. Show that there are no integers $ x_1, x_2, \ldots, x_p$ satisfying the equation
\[ \sum^p_{i \equal{} 1} x^2_i \minus{} \frac {4}{4 \cdot p \plus{} 1} \left( \sum^p_{i \equal{} 1} x_i \right)^2 \equal{} 1
\]
[b]OR[/b]
Show that there are only two values of $ p$ for which there are integers $ x_1, x_2, \ldots, x_p$ satisfying
\[ \sum^p_{i \equal{} 1} x^2_i \minus{} \frac {4}{4 \cdot p \plus{} 1} \left( \sum^p_{i \equal{} 1} x_i \right)^2 \equal{} 1
\]
2005 AIME Problems, 12
Square $ABCD$ has center $O$, $AB=900$, $E$ and $F$ are on $AB$ with $AE<BF$ and $E$ between $A$ and $F$, $m\angle EOF =45^\circ$, and $EF=400$. Given that $BF=p+q\sqrt{r}$, wherer $p,q,$ and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.
2008 ITest, 7
Find the number of integers $n$ for which $n^2+10n<2008$.
2015 Romania National Olympiad, 2
A quadratic function has the property that for any interval of length $ 1, $ the length of its image is at least $ 1. $
Show that for any interval of length $ 2, $ the length of its image is at least $ 4. $
2010 Contests, 1
Solve in the integers the diophantine equation
$$x^4-6x^2+1 = 7 \cdot 2^y.$$
2001 JBMO ShortLists, 4
The discriminant of the equation $x^2-ax+b=0$ is the square of a rational number and $a$ and $b$ are integers. Prove that the roots of the equation are integers.
2002 AMC 10, 18
For how many positive integers $n$ is $n^3-8n^2+20n-13$ a prime number?
$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }\text{more than 4}$
2006 AMC 12/AHSME, 24
Let $ S$ be the set of all points $ (x,y)$ in the coordinate plane such that $ 0\le x\le \frac \pi2$ and $ 0\le y\le \frac \pi2$. What is the area of the subset of $ S$ for which
\[ \sin^2 x \minus{} \sin x\sin y \plus{} \sin^2 y\le \frac 34?
\]$ \textbf{(A) } \frac {\pi^2}9 \qquad \textbf{(B) } \frac {\pi^2}8 \qquad \textbf{(C) } \frac {\pi^2}6\qquad \textbf{(D) } \frac {3\pi^2}{16} \qquad \textbf{(E) } \frac {2\pi^2}9$
2005 India National Olympiad, 3
Let $p, q, r$ be positive real numbers, not all equal, such that some two of the equations \begin{eqnarray*} px^2 + 2qx + r &=& 0 \\ qx^2 + 2rx + p &=& 0 \\ rx^2 + 2px + q &=& 0 . \\ \end{eqnarray*} have a common root, say $\alpha$. Prove that
$a)$ $\alpha$ is real and negative;
$b)$ the remaining third quadratic equation has non-real roots.
2007 JBMO Shortlist, 5
Prove that if $ p$ is a prime number, then $ 7p+3^{p}-4$ is not a perfect square.
1961 AMC 12/AHSME, 22
If $3x^3-9x^2+kx-12$ is divisible by $x-3$, then it is also divisible by:
${{ \textbf{(A)}\ 3x^2-x+4 \qquad\textbf{(B)}\ 3x^2-4 \qquad\textbf{(C)}\ 3x^2+4 \qquad\textbf{(D)}\ 3x-4 }\qquad\textbf{(E)}\ 3x+4 } $
2005 AMC 10, 10
There are two values of $ a$ for which the equation $ 4x^2 \plus{} ax \plus{} 8x \plus{} 9 \equal{} 0$ has only one solution for $ x$. What is the sum of these values of $ a$?
$ \textbf{(A)}\ \minus{}16\qquad
\textbf{(B)}\ \minus{}8\qquad
\textbf{(C)}\ 0\qquad
\textbf{(D)}\ 8\qquad
\textbf{(E)}\ 20$
2007 Junior Balkan MO, 1
Let $a$ be positive real number such that $a^{3}=6(a+1)$. Prove that the equation $x^{2}+ax+a^{2}-6=0$ has no real solution.
2006 National Olympiad First Round, 11
What is the sum of the real roots of the equation $4x^4-3x^2+7x-3=0$?
$
\textbf{(A)}\ -1
\qquad\textbf{(B)}\ -2
\qquad\textbf{(C)}\ -3
\qquad\textbf{(D)}\ -4
\qquad\textbf{(E)}\ \text {None of above}
$
2020 Indonesia MO, 2
Problem 2. Let $P(x) = ax^2 + bx + c$ where $a, b, c$ are real numbers. If $$P(a) = bc, \hspace{0.5cm} P(b) = ac, \hspace{0.5cm} P(c) = ab$$ then prove that $$(a - b)(b - c)(c - a)(a + b + c) = 0.$$
1992 China Team Selection Test, 3
For any prime $p$, prove that there exists integer $x_0$ such that $p | (x^2_0 - x_0 + 3)$ $\Leftrightarrow$ there exists integer $y_0$ such that $p | (y^2_0 - y_0 + 25).$
1985 AIME Problems, 4
A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly 1/1985.
[asy]
size(200);
pair A=(0,1), B=(1,1), C=(1,0), D=origin;
draw(A--B--C--D--A--(1,1/6));
draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1));
pair point=( 0.5 , 0.5 );
//label("$A$", A, dir(point--A));
//label("$B$", B, dir(point--B));
//label("$C$", C, dir(point--C));
//label("$D$", D, dir(point--D));
label("$1/n$", (11/12,1), N, fontsize(9));[/asy]