This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 107

1967 IMO Longlists, 13

Find whether among all quadrilaterals, whose interiors lie inside a semi-circle of radius $r$, there exist one (or more) with maximum area. If so, determine their shape and area.

2013 North Korea Team Selection Test, 5

The incircle $ \omega $ of a quadrilateral $ ABCD $ touches $ AB, BC, CD, DA $ at $ E, F, G, H $, respectively. Choose an arbitrary point $ X$ on the segment $ AC $ inside $ \omega $. The segments $ XB, XD $ meet $ \omega $ at $ I, J $ respectively. Prove that $ FJ, IG, AC $ are concurrent.

1982 Bundeswettbewerb Mathematik, 2

In a convex quadrilateral $ABCD$ sides $AB$ and $DC$ are both divided into $m$ equal parts by points $A, S_1 , S_2 , \ldots , S_{m-1} ,B$ and $D,T_1, T_2, \ldots , T_{m-1},C,$ respectively (in this order). Similarly, sides $BC$ and $AD$ are divided into $n$ equal parts by points $B,U_1,U_2, \ldots, U_{n-1},C$ and $A,V_1,V_2, \ldots,V_{n-1}, D$. Prove that for $1 \leq i \leq m-1$ each of the segments $S_i T_i$ is divided by the segments $U_j V_j$ ($1\leq j \leq n-1$) into $n$ equal parts

1998 Akdeniz University MO, 5

Let $ABCD$ a convex quadrilateral with $[BC]$ and $[CD]$'s midpoint is $P$ and $N$ respectively. If $$[AP]+[AN]=d$$ Show that, area of the $ABCD$ is less then $\frac{1}{2}d^2$

2016 Regional Olympiad of Mexico Southeast, 4

The diagonals of a convex quadrilateral $ABCD$ intersect in $E$. Let $S_1, S_2, S_3$ and $S_4$ the areas of the triangles $AEB, BEC, CED, DEA$ respectively. Prove that, if exists real numbers $w, x, y$ and $z$ such that $$S_1=x+y+xy, S_2=y+z+yz, S_3=w+z+wz, S_4=w+x+wx,$$ then $E$ is the midpoint of $AC$ or $E$ is the midpoint of $BD$.

1993 IMO Shortlist, 7

Let $A$, $B$, $C$, $D$ be four points in the plane, with $C$ and $D$ on the same side of the line $AB$, such that $AC \cdot BD = AD \cdot BC$ and $\angle ADB = 90^{\circ}+\angle ACB$. Find the ratio \[\frac{AB \cdot CD}{AC \cdot BD}, \] and prove that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicuar. Thus, proving that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal is equivalent to proving that the tangents to the circumcircles of the triangles $ACD$ and $BCD$ at the point $C$ are perpendicular.)

2014 Contests, 3

Convex quadrilateral $ABCD$ has $\angle ABC = \angle CDA = 90^{\circ}$. Point $H$ is the foot of the perpendicular from $A$ to $BD$. Points $S$ and $T$ lie on sides $AB$ and $AD$, respectively, such that $H$ lies inside triangle $SCT$ and \[ \angle CHS - \angle CSB = 90^{\circ}, \quad \angle THC - \angle DTC = 90^{\circ}. \] Prove that line $BD$ is tangent to the circumcircle of triangle $TSH$.

1989 IMO Shortlist, 14

A bicentric quadrilateral is one that is both inscribable in and circumscribable about a circle, i.e. both the incircle and circumcircle exists. Show that for such a quadrilateral, the centers of the two associated circles are collinear with the point of intersection of the diagonals.

2008 Germany Team Selection Test, 2

Point $ P$ lies on side $ AB$ of a convex quadrilateral $ ABCD$. Let $ \omega$ be the incircle of triangle $ CPD$, and let $ I$ be its incenter. Suppose that $ \omega$ is tangent to the incircles of triangles $ APD$ and $ BPC$ at points $ K$ and $ L$, respectively. Let lines $ AC$ and $ BD$ meet at $ E$, and let lines $ AK$ and $ BL$ meet at $ F$. Prove that points $ E$, $ I$, and $ F$ are collinear. [i]Author: Waldemar Pompe, Poland[/i]

1998 IMO Shortlist, 1

A convex quadrilateral $ABCD$ has perpendicular diagonals. The perpendicular bisectors of the sides $AB$ and $CD$ meet at a unique point $P$ inside $ABCD$. Prove that the quadrilateral $ABCD$ is cyclic if and only if triangles $ABP$ and $CDP$ have equal areas.

2021 Taiwan TST Round 2, 1

In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that [list] [*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and [*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color. [/list]

1999 IMO Shortlist, 7

The point $M$ is inside the convex quadrilateral $ABCD$, such that \[ MA = MC, \hspace{0,2cm} \widehat{AMB} = \widehat{MAD} + \widehat{MCD} \quad \textnormal{and} \quad \widehat{CMD} = \widehat{MCB} + \widehat{MAB}. \] Prove that $AB \cdot CM = BC \cdot MD$ and $BM \cdot AD = MA \cdot CD.$

2020 AMC 12/AHSME, 17

The vertices of a quadrilateral lie on the graph of $y = \ln x$, and the $x$-coordinates of these vertices are consecutive positive integers. The area of the quadrilateral is $\ln \frac{91}{90}$. What is the $x$-coordinate of the leftmost vertex? $\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 13$

2018 Polish Junior MO Second Round, 2

Let $ABC$ be an acute traingle with $AC \neq BC$. Point $K$ is a foot of altitude through vertex $C$. Point $O$ is a circumcenter of $ABC$. Prove that areas of quadrilaterals $AKOC$ and $BKOC$ are equal.

2021 Thailand TST, 1

In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that [list] [*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and [*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color. [/list]

1995 IMO Shortlist, 7

Let ABCD be a convex quadrilateral and O a point inside it. Let the parallels to the lines BC, AB, DA, CD through the point O meet the sides AB, BC, CD, DA of the quadrilateral ABCD at the points E, F, G, H, respectively. Then, prove that $ \sqrt {\left|AHOE\right|} \plus{} \sqrt {\left|CFOG\right|}\leq\sqrt {\left|ABCD\right|}$, where $ \left|P_1P_2...P_n\right|$ is an abbreviation for the non-directed area of an arbitrary polygon $ P_1P_2...P_n$.

2009 Germany Team Selection Test, 2

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

2019 AMC 10, 6

For how many of the following types of quadrilaterals does there exist a point in the plane of the quadrilateral that is equidistant from all four vertices of the quadrilateral? [list] [*] a square [*]a rectangle that is not a square [*] a rhombus that is not a square [*] a parallelogram that is not a rectangle or a rhombus [*] an isosceles trapezoid that is not a parallelogram [/list] $\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 3 \qquad\textbf{(D) } 4 \qquad\textbf{(E) } 5$

2025 AIME, 14

Let ${\triangle ABC}$ be a right triangle with $\angle A = 90^\circ$ and $BC = 38.$ There exist points $K$ and $L$ inside the triangle such \[AK = AL = BK = CL = KL = 14.\] The area of the quadrilateral $BKLC$ can be expressed as $n\sqrt3$ for some positive integer $n.$ Find $n.$

1998 IMO, 1

A convex quadrilateral $ABCD$ has perpendicular diagonals. The perpendicular bisectors of the sides $AB$ and $CD$ meet at a unique point $P$ inside $ABCD$. Prove that the quadrilateral $ABCD$ is cyclic if and only if triangles $ABP$ and $CDP$ have equal areas.

2015 Junior Balkan Team Selection Tests - Romania, 5

Let $ABCD$ be a convex quadrilateral with non perpendicular diagonals and with the sides $AB$ and $CD$ non parallel . Denote by $O$ the intersection of the diagonals , $H_1$ the orthocenter of the triangle $AOB$ and $H_2$ the orthocenter of the triangle $COD$ . Also denote with $M$ the midpoint of the side $AB$ and with $N$ the midpoint of the side $CD$ . Prove that $H_1H_2$ and $MN$ are parallel if and only if $AC=BD$

2017 EGMO, 1

Let $ABCD$ be a convex quadrilateral with $\angle DAB=\angle BCD=90^{\circ}$ and $\angle ABC> \angle CDA$. Let $Q$ and $R$ be points on segments $BC$ and $CD$, respectively, such that line $QR$ intersects lines $AB$ and $AD$ at points $P$ and $S$, respectively. It is given that $PQ=RS$.Let the midpoint of $BD$ be $M$ and the midpoint of $QR$ be $N$.Prove that the points $M,N,A$ and $C$ lie on a circle.

2008 Peru Iberoamerican Team Selection Test, P2

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

2012 IFYM, Sozopol, 7

A quadrilateral $ABCD$ is inscribed in a circle with center $O$. Let $A_1 B_1 C_1 D_1$ be the image of $ABCD$ after rotation with center $O$ and angle $\alpha \in (0,90^\circ)$. The points $P,Q,R$ and $S$ are intersections of $AB$ and $A_1 B_1$, $BC$ and $B_1 C_1$, $CD$ and $C_1 D_1$, and $DA$ and $D_1 A_1$. Prove that $PQRS$ is a parallelogram.

2020 AMC 10, 20

Quadrilateral $ABCD$ satisfies $\angle ABC = \angle ACD = 90^{\circ}, AC = 20$, and $CD = 30$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at point $E$, and $AE = 5$. What is the area of quadrilateral $ABCD$? $\textbf{(A) } 330 \qquad\textbf{(B) } 340 \qquad\textbf{(C) } 350 \qquad\textbf{(D) } 360 \qquad\textbf{(E) } 370$