Found problems: 1679
1974 IMO Longlists, 47
Given two points $A,B$ outside of a given plane $P,$ find the positions of points $M$ in the plane $P$ for which the ratio $\frac{MA}{MB}$ takes a minimum or maximum.
2002 Romania Team Selection Test, 3
Let $M$ and $N$ be the midpoints of the respective sides $AB$ and $AC$ of an acute-angled triangle $ABC$. Let $P$ be the foot of the perpendicular from $N$ onto $BC$ and let $A_1$ be the midpoint of $MP$. Points $B_1$ and $C_1$ are obtained similarly. If $AA_1$, $BB_1$ and $CC_1$ are concurrent, show that the triangle $ABC$ is isosceles.
[i]Mircea Becheanu[/i]
1983 IMO Longlists, 40
Four faces of tetrahedron $ABCD$ are congruent triangles whose angles form an arithmetic progression. If the lengths of the sides of the triangles are $a < b < c$, determine the radius of the sphere circumscribed about the tetrahedron as a function on $a, b$, and $c$. What is the ratio $c/a$ if $R = a \ ?$
1988 Balkan MO, 1
Let $ABC$ be a triangle and let $M,N,P$ be points on the line $BC$ such that $AM,AN,AP$ are the altitude, the angle bisector and the median of the triangle, respectively. It is known that
$\frac{[AMP]}{[ABC]}=\frac{1}{4}$ and $\frac{[ANP]}{[ABC]}=1-\frac{\sqrt{3}}{2}$.
Find the angles of triangle $ABC$.
2006 IberoAmerican Olympiad For University Students, 2
Prove that for any positive integer $n$ and any real numbers $a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n$ we have that the equation
\[a_1 \sin(x) + a_2 \sin(2x) +\cdots+a_n\sin(nx)=b_1 \cos(x)+b_2\cos(2x)+\cdots +b_n \cos(nx)\]
has at least one real root.
2012 France Team Selection Test, 2
Let $ABC$ be an acute-angled triangle with $AB\not= AC$. Let $\Gamma$ be the circumcircle, $H$ the orthocentre and $O$ the centre of $\Gamma$. $M$ is the midpoint of $BC$. The line $AM$ meets $\Gamma$ again at $N$ and the circle with diameter $AM$ crosses $\Gamma$ again at $P$. Prove that the lines $AP,BC,OH$ are concurrent if and only if $AH=HN$.
2011 Bogdan Stan, 4
Let be a natural number $ n, $ two $ \text{n-tuplets} $ of real numbers $ a:=\left( a_1,a_2,\ldots, a_n \right) , b:=\left( b_1,b_2,\ldots, b_n \right) , $ and the function $ f:\mathbb{R}\longrightarrow\mathbb{R}, f(x)=\sum_{i=1}^na_i\cos \left( b_ix \right) $. Prove that if the numbers of $ b $ are all positive and pairwise distinct,
[b]a)[/b] then, $ f\ge 0 $ implies that the numbers of $ a $ are all equal.
[b]b)[/b] if the numbers of $ a $ are all nonzero and $ f $ is periodic, then the ratio of any two numbers of $ b $ is rational.
[i]Marin Tolosi[/i]
2012 India National Olympiad, 4
Let $ABC$ be a triangle. An interior point $P$ of $ABC$ is said to be [i]good [/i]if we can find exactly $27$ rays emanating from $P$ intersecting the sides of the triangle $ABC$ such that the triangle is divided by these rays into $27$ [i]smaller triangles of equal area.[/i] Determine the number of good points for a given triangle $ABC$.
2019 Teodor Topan, 2
Let $ \left( a_n \right)_{n\ge 1} $ be an arithmetic progression with $ a_1=1 $ and natural ratio.
[b]a)[/b] Prove that
$$ a_n^{1/a_k} <1+\sqrt{\frac{2\left( a_n-1 \right)}{a_k\left( a_k -1 \right)}} , $$
for any natural numbers $ 2\le k\le n. $
[b]b)[/b] Calculate $ \lim_{n\to\infty } \frac{1}{a_n}\sum_{k=1}^n a_n^{1/a_k} . $
[i]Nicolae Bourbăcuț[/i]
1954 AMC 12/AHSME, 29
If the ratio of the legs of a right triangle is $ 1: 2$, then the ratio of the corresponding segments of the hypotenuse made by a perpendicular upon it from the vertex is:
$ \textbf{(A)}\ 1: 4 \qquad
\textbf{(B)}\ 1: \sqrt{2} \qquad
\textbf{(C)}\ 1: 2 \qquad
\textbf{(D)}\ 1: \sqrt{5} \qquad
\textbf{(E)}\ 1: 5$
Ukrainian TYM Qualifying - geometry, 2015.20
What is the smallest value of the ratio of the lengths of the largest side of the triangle to the radius of its inscribed circle?
1964 AMC 12/AHSME, 13
A circle is inscribed in a triangle with side lengths $8$, $13$, and $17$. Let the segments of the side of length $8$, made by a point of tangency, be $r$ and $s$, with $r<s$. What is the ratio $r:s$?
${{ \textbf{(A)}\ 1:3 \qquad\textbf{(B)}\ 2:5 \qquad\textbf{(C)}\ 1:2 \qquad\textbf{(D)}\ 2:3 }\qquad\textbf{(E)}\ 3:4 } $
2012 Albania Team Selection Test, 2
It is given an acute triangle $ABC$ , $AB \neq AC$ where the feet of altitude from $A$ its $H$. In the extensions of the sides $AB$ and $AC$ (in the direction of $B$ and $C$) we take the points $P$ and $Q$ respectively such that $HP=HQ$ and the points $B,C,P,Q$ are concyclic.
Find the ratio $\tfrac{HP}{HA}$.
2013 ELMO Shortlist, 10
Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.
[i]Proposed by David Stoner[/i]
1980 AMC 12/AHSME, 21
In triangle $ABC$, $\measuredangle CBA=72^\circ$, $E$ is the midpoint of side $AC$, and $D$ is a point on side $BC$ such that $2BD=DC$; $AD$ and $BE$ intersect at $F$. The ratio of the area of triangle $BDF$ to the area of quadrilateral $FDCE$ is
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair B=origin, C=(15,3), D=(5,1), A=7*dir(72)*dir(B--C), E=midpoint(A--C), F=intersectionpoint(A--D, B--E);
draw(E--B--A--C--B^^A--D);
label("$A$", A, dir(D--A));
label("$B$", B, dir(E--B));
label("$C$", C, dir(0));
label("$D$", D, SE);
label("$E$", E, N);
label("$F$", F, dir(80));[/asy]
$\text{(A)} \ \frac 15 \qquad \text{(B)} \ \frac 14 \qquad \text{(C)} \ \frac 13 \qquad \text{(D)} \ \frac 25 \qquad \text{(E)} \ \text{none of these}$
2008 Harvard-MIT Mathematics Tournament, 7
Compute $ \sum_{n \equal{} 1}^\infty\sum_{k \equal{} 1}^{n \minus{} 1}\frac {k}{2^{n \plus{} k}}$.
2018 AMC 10, 7
In the figure below, $N$ congruent semicircles lie on the diameter of a large semicircle, with their diameters covering the diameter of the large semicircle with no overlap. Let $A$ be the combined area of the small semicircles and $B$ be the area of the region inside the large semicircle but outside the semicircles. The ratio $A:B$ is $1:18$. What is $N$?
[asy] draw((0,0)--(18,0)); draw(arc((9,0),9,0,180));
filldraw(arc((1,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((3,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((5,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((7,0),1,0,180)--cycle,gray(0.8)); label("...",(9,0.5)); filldraw(arc((11,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((13,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((15,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((17,0),1,0,180)--cycle,gray(0.8));
[/asy]
$\textbf{(A) } 16 \qquad \textbf{(B) } 17 \qquad \textbf{(C) } 18 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 36$
2014 India PRMO, 10
In a triangle $ABC, X$ and $Y$ are points on the segments $AB$ and $AC$, respectively, such that $AX : XB = 1 : 2$ and $AY :YC = 2:1$. If the area of triangle $AXY$ is $10$, then what is the area of triangle $ABC$?
2007 Purple Comet Problems, 2
A positive number $\dfrac{m}{n}$ has the property that it is equal to the ratio of $7$ plus the number’s reciprocal and $65$ minus the number’s reciprocal. Given that $m$ and $n$ are relatively prime positive integers, find $2m + n$.
2002 AMC 10, 7
If an arc of $ 45^\circ$ on circle $ A$ has the same length as an arc of $ 30^\circ$ on circle $ B$, then the ratio of the area of circle $ A$ to the area of circle $ B$ is
$ \textbf{(A)}\ \frac {4}{9} \qquad \textbf{(B)}\ \frac {2}{3} \qquad \textbf{(C)}\ \frac {5}{6} \qquad \textbf{(D)}\ \frac {3}{2} \qquad \textbf{(E)}\ \frac {9}{4}$
1997 Moldova Team Selection Test, 2
In a convex pentagon every diagonal is parallel to one side. Show that the ratios between the lengths of diagonals and the sides parallel to them are equal and find their value.
1972 Miklós Schweitzer, 8
Given four points $ A_1,A_2,A_3,A_4$ in the plane in such a way that $ A_4$ is the centroid of the $ \bigtriangleup A_1A_2A_3$,
find a point $ A_5$ in the plane that maximizes the ratio \[ \frac{\min_{1 \leq i < j < k \leq 5}T(A_iA_jA_k)}{\max_{1 \leq i < j < k \leq 5}T(A_iA_jA_k)}.\] ($ T(ABC)$ denotes the area of the triangle $ \bigtriangleup ABC.$ )
[i]J. Suranyi[/i]
2010 AMC 12/AHSME, 19
A high school basketball game between the Raiders and Wildcats was tied at the end of the first quarter. The number of points scored by the Raiders in each of the four quarters formed an increasing geometric sequence, and the number of points scored by the Wildcats in each of the four quarters formed an increasing arithmetic sequence. At the end of the fourth quarter, the Raiders had won by one point. Neither team scored more than $ 100$ points. What was the total number of points scored by the two teams in the first half?
$ \textbf{(A)}\ 30 \qquad \textbf{(B)}\ 31 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 33 \qquad \textbf{(E)}\ 34$
1968 AMC 12/AHSME, 12
A circle passes through the vertices of a triangle with side-lengths of $7\tfrac{1}{2},10,12\tfrac{1}{2}$. The radius of the circle is:
$\textbf{(A)}\ \dfrac{15}{4} \qquad
\textbf{(B)}\ 5 \qquad
\textbf{(C)}\ \dfrac{25}{4} \qquad
\textbf{(D)}\ \dfrac{35}{4} \qquad
\textbf{(E)}\ \dfrac{15\sqrt2}{2} $
2006 AIME Problems, 11
A collection of 8 cubes consists of one cube with edge-length $k$ for each integer $k,\thinspace 1 \le k \le 8.$ A tower is to be built using all 8 cubes according to the rules:
$\bullet$ Any cube may be the bottom cube in the tower.
$\bullet$ The cube immediately on top of a cube with edge-length $k$ must have edge-length at most $k+2.$
Let $T$ be the number of different towers than can be constructed. What is the remainder when $T$ is divided by 1000?