Found problems: 1679
1996 All-Russian Olympiad, 5
Show that in the arithmetic progression with first term 1 and ratio 729, there are infinitely many powers of 10.
[i]L. Kuptsov[/i]
1999 Baltic Way, 14
Let $ABC$ be an isosceles triangle with $AB=AC$. Points $D$ and $E$ lie on the sides $AB$ and $AC$, respectively. The line passing through $B$ and parallel to $AC$ meets the line $DE$ at $F$. The line passing through $C$ and parallel to $AB$ meets the line $DE$ at $G$. Prove that
\[\frac{[DBCG]}{[FBCE]}=\frac{AD}{DE} \]
2012-2013 SDML (Middle School), 2
If $\frac{a}{3}=b$ and $\frac{b}{4}=c$, what is the value of $\frac{ab}{c^2}$?
$\text{(A) }12\qquad\text{(B) }36\qquad\text{(C) }48\qquad\text{(D) }60\qquad\text{(E) }144$
2018 Belarus Team Selection Test, 1.2
Given the parallelogram $ABCD$. The circle $S_1$ passes through the vertex $C$ and touches the sides $BA$ and $AD$ at points $P_1$ and $Q_1$, respectively. The circle $S_2$ passes through the vertex $B$ and touches the side $DC$ at points $P_2$ and $Q_2$, respectively. Let $d_1$ and $d_2$ be the distances from $C$ and $B$ to the lines $P_1Q_1$ and $P_2Q_2$, respectively.
Find all possible values of the ratio $d_1:d_2$.
[i](I. Voronovich)[/i]
2009 AMC 12/AHSME, 20
Convex quadrilateral $ ABCD$ has $ AB\equal{}9$ and $ CD\equal{}12$. Diagonals $ AC$ and $ BD$ intersect at $ E$, $ AC\equal{}14$, and $ \triangle AED$ and $ \triangle BEC$ have equal areas. What is $ AE$?
$ \textbf{(A)}\ \frac{9}{2}\qquad \textbf{(B)}\ \frac{50}{11}\qquad \textbf{(C)}\ \frac{21}{4}\qquad \textbf{(D)}\ \frac{17}{3}\qquad \textbf{(E)}\ 6$
2013 Purple Comet Problems, 16
A quarry wants to sell a large pile of gravel. At full price, the gravel would sell for $3200$ dollars. But during the first week the quarry only sells $60\%$ of the gravel at full price. The following week the quarry drops the price by $10\%$, and, again, it sells $60\%$ of the remaining gravel. Each week, thereafter, the quarry reduces the price by another $10\%$ and sells $60\%$ of the remaining gravel. This continues until there is only a handful of gravel left. How many dollars does the quarry collect for the sale of all its gravel?
2011 Math Prize for Girls Olympiad, 2
Let $\triangle ABC$ be an equilateral triangle. If $0 < r < 1$, let $D_r$ be the point on $\overline{AB}$ such that $AD_r = r \cdot AB$, let $E_r$ be the point on $\overline{BC}$ such that $BE_r = r \cdot BC$, and let $P_r$ be the point where $\overline{AE_r}$ and $\overline{CD_r}$ intersect. Prove that the set of points $P_r$ (over all $0 < r < 1$) lie on a circle.
2011 Sharygin Geometry Olympiad, 14
In triangle $ABC$, the altitude and the median from vertex $A$ form (together with line $BC$) a triangle such that the bisectrix of angle $A$ is the median; the altitude and the median from vertex $B$ form (together with line AC) a triangle such that the bisectrix of angle $B$ is the bisectrix. Find the ratio of sides for triangle $ABC$.
2006 Brazil National Olympiad, 5
Let $P$ be a convex $2006$-gon. The $1003$ diagonals connecting opposite vertices and the $1003$ lines connecting the midpoints of opposite sides are concurrent, that is, all $2006$ lines have a common point. Prove that the opposite sides of $P$ are parallel and congruent.
2021 Belarusian National Olympiad, 9.6
The medians of a right triangle $ABC$ ($\angle C = 90^{\circ}$) intersect at $M$. Point $L$ lies on the $AC$ such that $\angle ABL=\angle CBL$. It turned out that $\angle BML = 90^{\circ}$.
Find the ration $AB : BC$.
2003 India Regional Mathematical Olympiad, 7
Consider the set $X$ = $\{ 1,2 \ldots 10 \}$ . Find two disjoint nonempty sunsets $A$ and $B$ of $X$ such that
a) $A \cup B = X$;
b) $\prod_{x\in A}x$ is divisible by $\prod_{x\in B}x$, where $\prod_{x\in C}x$ is the product of all numbers in $C$;
c) $\frac{ \prod\limits_{x\in A}x}{ \prod\limits_{x\in B}x}$ is as small as possible.
1964 Kurschak Competition, 1
$ABC$ is an equilateral triangle. $D$ and$ D'$ are points on opposite sides of the plane $ABC$ such that the two tetrahedra $ABCD$ and $ABCD'$ are congruent (but not necessarily with the vertices in that order). If the polyhedron with the five vertices $A, B, C, D, D'$ is such that the angle between any two adjacent faces is the same, find $DD'/AB$ .
2012 NIMO Problems, 5
In the diagram below, three squares are inscribed in right triangles. Their areas are $A$, $M$, and $N$, as indicated in the diagram. If $M = 5$ and $N = 12$, then $A$ can be expressed as $a + b\sqrt{c}$, where $a$, $b$, and $c$ are positive integers and $c$ is not divisible by the square of any prime. Compute $a + b + c$.
[asy]
size(250);
defaultpen (linewidth (0.7) + fontsize (10));
pair O = origin, A = (1, 1), B = (4/3, 1/3), C = (2/3, 5/3), P = (3/2, 0), Q = (0,3);
draw (P--O--Q--cycle^^(0, 5/3)--C--(2/3,1)^^(0,1)--A--(1,0)^^(1,1/3)--B--(4/3,0));
label("$A$", (.5,.5));
label("$M$", (7/6, 1/6));
label("$N$", (1/3, 4/3));[/asy]
[i]Proposed by Aaron Lin[/i]
2010 Malaysia National Olympiad, 5
A circle and a square overlap such that the overlapping area is $50\%$ of the area of the circle, and is $25\%$ of the area of the square, as shown in the figure. Find the ratio of the area of the square outside the circle to the area of the whole figure.
[img]https://cdn.artofproblemsolving.com/attachments/e/2/c209a95f457dbf3c46f66f82c0a45cc4b5c1c8.png[/img]
1995 AIME Problems, 11
A right rectangular prism $P$ (i.e., a rectangular parallelpiped) has sides of integral length $a, b, c,$ with $a\le b\le c.$ A plane parallel to one of the faces of $P$ cuts $P$ into two prisms, one of which is similar to $P,$ and both of which have nonzero volume. Given that $b=1995,$ for how many ordered triples $(a, b, c)$ does such a plane exist?
2013 Miklós Schweitzer, 12
There are ${n}$ tokens in a pack. Some of them (at least one, but not all) are white and the rest are black. All tokens are extracted randomly from the pack, one by one, without putting them back. Let ${X_i}$ be the ratio of white tokens in the pack before the ${i^{\text{th}}}$ extraction and let
\[ \displaystyle T =\max \{ |X_i-X_j| : 1 \leq i \leq j \leq n\}.\]
Prove that ${\Bbb{E}(T) \leq H(\Bbb{E}(X_1))},$ where ${H(x)=-x\ln x -(1-x)\ln(1-x)}.$
[i]Proposed by Tamás Móri[/i]
2002 Romania National Olympiad, 2
Let $ABC$ be a right triangle where $\measuredangle A = 90^\circ$ and $M\in (AB)$ such that $\frac{AM}{MB}=3\sqrt{3}-4$. It is known that the symmetric point of $M$with respect to the line $GI$ lies on $AC$. Find the measure of $\measuredangle B$.
2008 Tournament Of Towns, 3
In his triangle $ABC$ Serge made some measurements and informed Ilias about the lengths of median $AD$ and side $AC$. Based on these data Ilias proved the assertion: angle $CAB$ is obtuse, while angle $DAB$ is acute. Determine a ratio $AD/AC$ and prove Ilias' assertion (for any triangle with such a ratio).
1957 AMC 12/AHSME, 49
The parallel sides of a trapezoid are $ 3$ and $ 9$. The non-parallel sides are $ 4$ and $ 6$. A line parallel to the bases divides the trapezoid into two trapezoids of equal perimeters. The ratio in which each of the non-parallel sides is divided is:
[asy]defaultpen(linewidth(.8pt));
unitsize(2cm);
pair A = origin;
pair B = (2.25,0);
pair C = (2,1);
pair D = (1,1);
pair E = waypoint(A--D,0.25);
pair F = waypoint(B--C,0.25);
draw(A--B--C--D--cycle);
draw(E--F);
label("6",midpoint(A--D),NW);
label("3",midpoint(C--D),N);
label("4",midpoint(C--B),NE);
label("9",midpoint(A--B),S);[/asy]$ \textbf{(A)}\ 4: 3\qquad \textbf{(B)}\ 3: 2\qquad \textbf{(C)}\ 4: 1\qquad \textbf{(D)}\ 3: 1\qquad \textbf{(E)}\ 6: 1$
2005 Hungary-Israel Binational, 3
There are seven rods erected at the vertices of a regular heptagonal area. The top of each rod is connected to the top of its second neighbor by a straight piece of wire so that, looking from above, one sees each wire crossing exactly two others. Is it possible to set the respective heights of the rods in such a way that no four tops of the rods are coplanar and each wire passes one of the crossings from above and the other one from below?
2010 Bosnia Herzegovina Team Selection Test, 2
Let $AB$ and $FD$ be chords in circle, which does not intersect and $P$ point on arc $AB$ which does not contain chord $FD$. Lines $PF$ and $PD$ intersect chord $AB$ in $Q$ and $R$. Prove that $\frac{AQ* RB}{QR}$ is constant, while point $P$ moves along the ray $AB$.
2000 National High School Mathematics League, 9
If $a+\log_2 3,a+\log_4 3,a+\log_8 3$ are a geometric series, then the common ratio is________.
1952 Kurschak Competition, 3
$ABC$ is a triangle. The point A' lies on the side opposite to $A$ and $BA'/BC = k$, where $1/2 < k < 1$. Similarly, $B'$ lies on the side opposite to $B$ with $CB'/CA = k$, and $C'$ lies on the side opposite to $C$ with $AC'/AB = k$. Show that the perimeter of $A'B'C'$ is less than $k$ times the perimeter of $ABC$.
1992 AIME Problems, 4
In Pascal's Triangle, each entry is the sum of the two entries above it. The first few rows of the triangle are shown below.
\[\begin{array}{c@{\hspace{8em}}
c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{4pt}}c@{\hspace{2pt}}
c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{3pt}}c@{\hspace{6pt}}
c@{\hspace{6pt}}c@{\hspace{6pt}}c} \vspace{4pt}
\text{Row 0: } & & & & & & & 1 & & & & & & \\\vspace{4pt}
\text{Row 1: } & & & & & & 1 & & 1 & & & & & \\\vspace{4pt}
\text{Row 2: } & & & & & 1 & & 2 & & 1 & & & & \\\vspace{4pt}
\text{Row 3: } & & & & 1 & & 3 & & 3 & & 1 & & & \\\vspace{4pt}
\text{Row 4: } & & & 1 & & 4 & & 6 & & 4 & & 1 & & \\\vspace{4pt}
\text{Row 5: } & & 1 & & 5 & &10& &10 & & 5 & & 1 & \\\vspace{4pt}
\text{Row 6: } & 1 & & 6 & &15& &20& &15 & & 6 & & 1
\end{array}\]
In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio $3: 4: 5$?
2009 Hong Kong TST, 4
Two circles $ C_1,C_2$ with different radii are given in the plane, they touch each other externally at $ T$. Consider any points $ A\in C_1$ and $ B\in C_2$, both different from $ T$, such that $ \angle ATB \equal{} 90^{\circ}$.
(a) Show that all such lines $ AB$ are concurrent.
(b) Find the locus of midpoints of all such segments $ AB$.