Found problems: 1679
2014 AMC 10, 15
In rectangle $ABCD$, $DC = 2CB$ and points $E$ and $F$ lie on $\overline{AB}$ so that $\overline{ED}$ and $\overline{FD}$ trisect $\angle ADC$ as shown. What is the ratio of the area of $\triangle DEF$ to the area of rectangle $ABCD$?
[asy]
draw((0, 0)--(0, 1)--(2, 1)--(2, 0)--cycle);
draw((0, 0)--(sqrt(3)/3, 1));
draw((0, 0)--(sqrt(3), 1));
label("A", (0, 1), N);
label("B", (2, 1), N);
label("C", (2, 0), S);
label("D", (0, 0), S);
label("E", (sqrt(3)/3, 1), N);
label("F", (sqrt(3), 1), N);
[/asy]
${ \textbf{(A)}\ \ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{\sqrt{6}}{8}\qquad\textbf{(C)}\ \frac{3\sqrt{3}}{16}\qquad\textbf{(D)}}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{4}$
2009 Purple Comet Problems, 14
Let $ABCD$ be a trapezoid with $AB$ parallel to $CD, AB$ has length $1,$ and $CD$ has length $41.$ Let points $X$ and $Y$ lie on sides $AD$ and $BC,$ respectively, such that $XY$ is parallel to $AB$ and $CD,$ and $XY$ has length $31.$ Let $m$ and $n$ be two relatively prime positive integers such that the ratio of the area of $ABYX$ to the area of $CDXY$ is $\tfrac{m}{n}.$ Find $m+2n.$
2002 Putnam, 5
Define a sequence by $a_0=1$, together with the rules $a_{2n+1}=a_n$ and $a_{2n+2}=a_n+a_{n+1}$ for each integer $n\ge0$. Prove that every positive rational number appears in the set $ \left\{ \tfrac {a_{n-1}}{a_n}: n \ge 1 \right\} = \left\{ \tfrac {1}{1}, \tfrac {1}{2}, \tfrac {2}{1}, \tfrac {1}{3}, \tfrac {3}{2}, \cdots \right\} $.
2013 Romanian Master of Mathematics, 4
Suppose two convex quadrangles in the plane $P$ and $P'$, share a point $O$ such that, for every line $l$ trough $O$, the segment along which $l$ and $P$ meet is longer then the segment along which $l$ and $P'$ meet. Is it possible that the ratio of the area of $P'$ to the area of $P$ is greater then $1.9$?
2020 BMT Fall, 4
Let $\varphi$ be the positive solution to the equation $$x^2=x+1.$$ For $n\ge 0$, let $a_n$ be the unique integer such that $\varphi^n-a_n\varphi$ is also an integer. Compute $$\sum_{n=0}^{10}a_n.$$
2001 Estonia National Olympiad, 3
A circle with center $I$ and radius $r$ is inscribed in a triangle $ABC$ with a right angle at $C$. Rays $AI$ and $CI$ meet the opposite sides at $D$ and $E$ respectively. Prove that $\frac{1}{AE}+\frac{1}{BD}=\frac{1}{r}$
2013 Romanian Masters In Mathematics, 1
Suppose two convex quadrangles in the plane $P$ and $P'$, share a point $O$ such that, for every line $l$ trough $O$, the segment along which $l$ and $P$ meet is longer then the segment along which $l$ and $P'$ meet. Is it possible that the ratio of the area of $P'$ to the area of $P$ is greater then $1.9$?
2003 Croatia National Olympiad, Problem 1
Let $a,b,c$ be the sides of triangle $ABC$ and let $\alpha,\beta,\gamma$ be the corresponding angles.
(a) If $\alpha=3\beta$, prove that $\left(a^2-b^2\right)(a-b)=bc^2$.
(b) Is the converse true?
1954 Moscow Mathematical Olympiad, 263
Define the maximal value of the ratio of a three-digit number to the sum of its digits.
2013 AMC 12/AHSME, 13
Let points $ A = (0,0) , \ B = (1,2), \ C = (3,3), $ and $ D = (4,0) $. Quadrilateral $ ABCD $ is cut into equal area pieces by a line passing through $ A $. This line intersects $ \overline{CD} $ at point $ \left (\frac{p}{q}, \frac{r}{s} \right ) $, where these fractions are in lowest terms. What is $ p + q + r + s $?
$ \textbf{(A)} \ 54 \qquad \textbf{(B)} \ 58 \qquad \textbf{(C)} \ 62 \qquad \textbf{(D)} \ 70 \qquad \textbf{(E)} \ 75 $
2006 AMC 12/AHSME, 3
The ratio of Mary's age to Alice's age is $ 3: 5$. Alice is $ 30$ years old. How old is Mary?
$ \textbf{(A) } 15\qquad \textbf{(B) } 18\qquad \textbf{(C) } 20\qquad \textbf{(D) } 24\qquad \textbf{(E) } 50$
2012 NIMO Problems, 8
Points $A$, $B$, and $O$ lie in the plane such that $\measuredangle AOB = 120^\circ$. Circle $\omega_0$ with radius $6$ is constructed tangent to both $\overrightarrow{OA}$ and $\overrightarrow{OB}$. For all $i \ge 1$, circle $\omega_i$ with radius $r_i$ is constructed such that $r_i < r_{i - 1}$ and $\omega_i$ is tangent to $\overrightarrow{OA}$, $\overrightarrow{OB}$, and $\omega_{i - 1}$. If
\[
S = \sum_{i = 1}^\infty r_i,
\]
then $S$ can be expressed as $a\sqrt{b} + c$, where $a, b, c$ are integers and $b$ is not divisible by the square of any prime. Compute $100a + 10b + c$.
[i]Proposed by Aaron Lin[/i]
2008 All-Russian Olympiad, 2
Petya and Vasya are given equal sets of $ N$ weights, in which the masses of any two weights are in ratio at most $ 1.25$. Petya succeeded to divide his set into $ 10$ groups of equal masses, while Vasya succeeded to divide his set into $ 11$ groups of equal masses. Find the smallest possible $ N$.
1994 North Macedonia National Olympiad, 2
Let $ ABC $ be a triangle whose vertices have integer coordinates and inside of which there is exactly one point $ O $ with integer coordinates. Let $ D $ be the intersection of the lines $ BC $ and $ AO. $ Find the largest possible value of $ \frac {\overline{AO}} {\overline{OD}} $.
2014 NIMO Problems, 4
Define the infinite products \[ A = \prod\limits_{i=2}^{\infty} \left(1-\frac{1}{n^3}\right) \text{ and } B = \prod\limits_{i=1}^{\infty}\left(1+\frac{1}{n(n+1)}\right). \] If $\tfrac{A}{B} = \tfrac{m}{n}$ where $m,n$ are relatively prime positive integers, determine $100m+n$.
[i]Proposed by Lewis Chen[/i]
2009 Purple Comet Problems, 22
The diagram shows a parabola, a line perpendicular to the parabola's axis of symmetry, and three similar isosceles triangles each with a base on the line and vertex on the parabola. The two smaller triangles are congruent and each have one base vertex on the parabola and one base vertex shared with the larger triangle. The ratio of the height of the larger triangle to the height of the smaller triangles is $\tfrac{a+\sqrt{b}}{c}$ where $a$, $b$, and $c$ are positive integers, and $a$ and $c$ are relatively prime. Find $a + b + c$.
[asy]
size(200);
real f(real x) {return 1.2*exp(2/3*log(16-x^2));}
path Q=graph(f,-3.99999,3.99999);
path [] P={(-4,0)--(-2,0)--(-3,f(-3))--cycle,(-2,0)--(2,0)--(0,f(0))--cycle,(4,0)--(2,0)--(3,f(3))--cycle};
for(int k=0;k<3;++k)
{
fill(P[k],grey); draw(P[k]);
}
draw((-6,0)--(6,0),linewidth(1)); draw(Q,linewidth(1));[/asy]
2006 AMC 12/AHSME, 14
Two farmers agree that pigs are worth $ \$300$ and that goats are worth $ \$210$. When one farmer owes the other money, he pays the debt in pigs or goats, with ``change'' received in the form of goats or pigs as necessary. (For example, a $ \$390$ debt could be paid with two pigs, with one goat received in change.) What is the amount of the smallest positive debt that can be resolved in this way?
$ \textbf{(A) } \$5\qquad \textbf{(B) } \$10\qquad \textbf{(C) } \$30\qquad \textbf{(D) } \$90\qquad \textbf{(E) } \$210$
1989 Putnam, B5
Label the vertices of a trapezoid $T$ inscribed in the unit circle as $A,B,C,D$ counterclockwise with $AB\parallel CD$. Let $s_1,s_2,$ and $d$ denote the lengths of $AB$, $CD$, and $OE$, where $E$ is the intersection of the diagonals of $T$, and $O$ is the center of the circle. Determine the least upper bound of $\frac{s_1-s_2}d$ over all $T$ for which $d\ne0$, and describe all cases, if any, in which equality is attained.
2000 AMC 10, 19
Through a point on the hypotenuse of a right triangle, lines are drawn parallel to the legs of the triangle so that the trangle is divided into a square and two smaller right triangles. The area of one of the two small right triangles is $m$ times the area of the square. The ratio of the area of the other small right triangle to the area of the square is
$\text{(A)}\ \frac1{2m+1}\qquad\text{(B)}\ m \qquad\text{(C)}\ 1-m\qquad\text{(D)}\ \frac1{4m} \qquad\text{(E)}\ \frac1{8m^2}$
2012 AMC 12/AHSME, 15
Jesse cuts a circular paper disk of radius $12$ along two radii to form two sectors, the smaller having a central angle of $120$ degrees. He makes two circular cones, using each sector to form the lateral surface of a cone. What is the ratio of the volume of the smaller cone to that of the larger?
$ \textbf{(A)}\ \frac{1}{8} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{\sqrt{10}}{10} \qquad\textbf{(D)}\ \frac{\sqrt{5}}{6} \qquad\textbf{(E)}\ \frac{\sqrt{10}}{5} $
PEN E Problems, 40
Prove that there do not exist eleven primes, all less than $20000$, which form an arithmetic progression.
2004 Korea National Olympiad, 5
$A, B, C$, and $D$ are the four different points on the circle $O$ in the order. Let the centre of the scribed circle of triangle $ABC$, which is tangent to $BC$, be $O_1$. Let the centre of the scribed circle of triangle $ACD$, which is tangent to $CD$, be $O_2$.
(1) Show that the circumcentre of triangle $ABO_1$ is on the circle $O$.
(2) Show that the circumcircle of triangle $CO_1O_2$ always pass through a fixed point on the circle $O$, when $C$ is moving along arc $BD$.
2009 Tuymaada Olympiad, 2
A necklace consists of 100 blue and several red beads. It is known that every segment of the necklace containing 8 blue beads contain also at least 5 red beads. What minimum number of red beads can be in the necklace?
[i]Proposed by A. Golovanov[/i]
2000 AMC 12/AHSME, 24
If circular arcs $ AC$ and $ BC$ have centers at $ B$ and $ A$, respectively, then there exists a circle tangent to both $ \stackrel{\frown}{AC}$ and $ \stackrel{\frown}{BC}$, and to $ \overline{AB}$. If the length of $ \stackrel{\frown}{BC}$ is $ 12$, then the circumference of the circle is
[asy]unitsize(4cm);
defaultpen(fontsize(8pt)+linewidth(.8pt));
dotfactor=3;
pair O=(0,.375);
pair A=(-.5,0);
pair B=(.5,0);
pair C=shift(-.5,0)*dir(60);
draw(Arc(A,1,0,60));
draw(Arc(B,1,120,180));
draw(A--B);
draw(Circle(O,.375));
dot(A);
dot(B);
dot(C);
label("$A$",A,SW);
label("$B$",B,SE);
label("$C$",C,N);[/asy]$ \textbf{(A)}\ 24 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 26 \qquad \textbf{(D)}\ 27 \qquad \textbf{(E)}\ 28$
2005 USAMTS Problems, 1
$\overline{AB}$ is a diameter of circle $C_1$. Point $P$ is on $C_1$ such that $AP>BP$. Circle $C_2$ is centered at $P$ with radius $PB$. The extension of $\overline{AP}$ past $P$ meets $C_2$ at $Q$. Circle $C_3$ is centered at $A$ and is externally tangent to $C_2$. Circle $C_4$ passes through $A$, $Q$, and $R$. Find, with proof, the ratio between the area of $C_4$ and the area of $C_1$, and show that this ratio is the same for all points $P$ on $C_1$ such that $AP>BP$.