This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2025 Junior Macedonian Mathematical Olympiad, 5

Let $M$ be the midpoint of side $BC$ in $\triangle ABC$, and $P \neq B$ is such that the quadrilateral $ABMP$ is cyclic and the circumcircle of $\triangle BPC$ is tangent to the line $AB$. If $E$ is the second common point of the line $BP$ and the circumcircle of $\triangle ABC$, determine the ratio $BE: BP$.

Geometry Mathley 2011-12, 12.1

Let $ABC$ be an acute triangle with orthocenter $H$, and $P$ a point interior to the triangle. Points $D,E,F$ are the reflections of $P$ about $BC,CA,AB$. If $Q$ is the intersection of $HD$ and $EF$, prove that the ratio $HQ/HD$ is independent of the choice of $P$. Luis González

1990 Putnam, B6

Tags: ratio
Let $S$ be a nonempty closed bounded convex set in the plane. Let $K$ be a line and $t$ a positive number. Let $L_1$ and $L_2$ be support lines for $S$ parallel to $K_1$, and let $ \overline {L} $ be the line parallel to $K$ and midway between $L_1$ and $L_2$. Let $B_S(K,t)$ be the band of points whose distance from $\overline{L}$ is at most $ \left( \frac {t}{2} \right) w $, where $w$ is the distance between $L_1$ and $L_2$. What is the smallest $t$ such that \[ S \cap \bigcap_K B_S (K, t) \ne \emptyset \]for all $S$? ($K$ runs over all lines in the plane.)

1982 All Soviet Union Mathematical Olympiad, 332

The parallelogram $ABCD$ isn't a diamond. The ratio of the diagonal lengths $|AC|/|BD|$ equals to $k$. The $[AM)$ ray is symmetric to the $[AD)$ ray with respect to the $(AC)$ line. The $[BM)$ ray is symmetric to the $[BC)$ ray with respect to the $(BD)$ line. ($M$ point is those rays intersection.) Find the ratio $|AM|/|BM|$ .

2012 AMC 12/AHSME, 2

A circle of radius $5$ is inscribed in a rectangle as shown. The ratio of the the length of the rectangle to its width is $2\ :\ 1$. What is the area of the rectangle? [asy] draw((0,0)--(0,10)--(20,10)--(20,0)--cycle); draw(circle((10,5),5)); [/asy] $ \textbf{(A)}\ 50\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 125\qquad\textbf{(D)}\ 150\qquad\textbf{(E)}\ 200 $

1962 AMC 12/AHSME, 16

Given rectangle $ R_1$ with one side $ 2$ inches and area $ 12$ square inches. Rectangle $ R_2$ with diagonal $ 15$ inches is similar to $ R_1.$ Expressed in square inches the area of $ R_2$ is: $ \textbf{(A)}\ \frac92 \qquad \textbf{(B)}\ 36 \qquad \textbf{(C)}\ \frac{135}{2} \qquad \textbf{(D)}\ 9 \sqrt{10} \qquad \textbf{(E)}\ \frac{27 \sqrt{10}}{4}$

2011 Harvard-MIT Mathematics Tournament, 3

Nathaniel and Obediah play a game in which they take turns rolling a fair six-sided die and keep a running tally of the sum of the results of all rolls made. A player wins if, after he rolls, the number on the running tally is a multiple of 7. Play continues until either player wins, or else inde nitely. If Nathaniel goes fi rst, determine the probability that he ends up winning.

2013 Serbia National Math Olympiad, 5

Let $A'$ and $B'$ be feet of altitudes from $A$ and $B$, respectively, in acute-angled triangle $ABC$ ($AC\not = BC$). Circle $k$ contains points $A'$ and $B'$ and touches segment $AB$ in $D$. If triangles $ADA'$ and $BDB'$ have the same area, prove that \[\angle A'DB'= \angle ACB.\]

2008 Tuymaada Olympiad, 6

Let $ ABCD$ be an isosceles trapezoid with $ AD \parallel BC$. Its diagonals $ AC$ and $ BD$ intersect at point $ M$. Points $ X$ and $ Y$ on the segment $ AB$ are such that $ AX \equal{} AM$, $ BY \equal{} BM$. Let $ Z$ be the midpoint of $ XY$ and $ N$ is the point of intersection of the segments $ XD$ and $ YC$. Prove that the line $ ZN$ is parallel to the bases of the trapezoid. [i]Author: A. Akopyan, A. Myakishev[/i]

2013 NIMO Problems, 6

Tags: geometry , ratio
Given a regular dodecagon (a convex polygon with 12 congruent sides and angles) with area 1, there are two possible ways to dissect this polygon into 12 equilateral triangles and 6 squares. Let $T_1$ denote the union of all triangles in the first dissection, and $S_1$ the union of all squares. Define $T_2$ and $S_2$ similarly for the second dissection. Let $S$ and $T$ denote the areas of $S_1 \cap S_2$ and $T_1 \cap T_2$, respectively. If $\frac{S}{T} = \frac{a+b\sqrt{3}}{c}$ where $a$ and $b$ are integers, $c$ is a positive integer, and $\gcd(a,c)=1$, compute $10000a+100b+c$. [i]Proposed by Lewis Chen[/i]

2015 AMC 10, 9

Tags: ratio
Two right circular cylinders have the same volume. The radius of the second cylinder is $10\%$ more than the radius of the first. What is the relationship between the heights of the two cylinders? $\textbf{(A) }\text{The second height is 10\% less than the first.}$ $\textbf{(B) }\text{The first height is 10\% more than the second.}$ $\textbf{(C) }\text{The second height is 21\% less than the first.}$ $\textbf{(D) }\text{The first height is 21\% more than the second.}$ $\textbf{(E) }\text{The second height is 80\% of the first.}$

2007 Nordic, 4

Tags: ratio , geometry
A line through $A$ intersects a circle at points $B,C$ with $B$ between $A,C$. The two tangents from $A$ intersect the circle at $S,T$. $ST$ and $AC$ intersect at $P$. Show that $\frac{AP}{PC}=2\frac{AB}{BC}$.

1996 AIME Problems, 13

In triangle $ABC, AB=\sqrt{30}, AC=\sqrt{6},$ and $BC=\sqrt{15}.$ There is a point $D$ for which $\overline{AD}$ bisects $\overline{BC}$ and $\angle ADB$ is a right angle. The ratio \[ \frac{\text{Area}(\triangle ADB)}{\text{Area}(\triangle ABC)} \] can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2006 CentroAmerican, 6

Let $ABCD$ be a convex quadrilateral. $I=AC\cap BD$, and $E$, $H$, $F$ and $G$ are points on $AB$, $BC$, $CD$ and $DA$ respectively, such that $EF \cap GH= I$. If $M=EG \cap AC$, $N=HF \cap AC$, show that \[\frac{AM}{IM}\cdot \frac{IN}{CN}=\frac{IA}{IC}.\]

1966 AMC 12/AHSME, 1

Tags: ratio
Given that the ratio of $3x-4$ to $y+15$ is constant, and $y=3$ when $x=2$, then, when $y=12$, $x$ equals: $\text{(A)} \ \frac 18 \qquad \text{(B)} \ \frac 73 \qquad \text{(C)} \ \frac78 \qquad \text{(D)} \ \frac72 \qquad \text{(E)} \ 8$

2010 Indonesia TST, 4

Let $ ABC$ be an acute-angled triangle such that there exist points $ D,E,F$ on side $ BC,CA,AB$, respectively such that the inradii of triangle $ AEF,BDF,CDE$ are all equal to $ r_0$. If the inradii of triangle $ DEF$ and $ ABC$ are $ r$ and $ R$, respectively, prove that \[ r\plus{}r_0\equal{}R.\] [i]Soewono, Bandung[/i]

2002 AIME Problems, 12

Tags: ratio , probability
A basketball player has a constant probability of $.4$ of making any given shot, independent of previous shots. Let $a_{n}$ be the ratio of shots made to shots attempted after $n$ shots. The probability that $a_{10}=.4$ and $a_{n}\le .4$ for all $n$ such that $1\le n \le 9$ is given to be $p^{a}q^{b}r/(s^{c}),$ where $p,$ $q,$ $r,$ and $s$ are primes, and $a,$ $b,$ and $c$ are positive integers. Find $(p+q+r+s)(a+b+c).$

1995 National High School Mathematics League, 4

Color all points on a plane in red or blue. Prove that there exists two similar triangles, their similarity ratio is $1995$, and apexes of both triangles are in the same color.

1995 Czech and Slovak Match, 3

Consider all triangles $ABC$ in the cartesian plane whose vertices are at lattice points (i.e. with integer coordinates) and which contain exactly one lattice point (to be denoted $P$) in its interior. Let the line $AP$ meet $BC$ at $E$. Determine the maximum possible value of the ratio $\frac{AP}{PE}$.

2005 MOP Homework, 7

Let $a$, $b$, and $c$ be pairwise distinct positive integers, which are side lengths of a triangle. There is a line which cuts both the area and the perimeter of the triangle into two equal parts. This line cuts the longest side of the triangle into two parts with ratio $2:1$. Determine $a$, $b$, and $c$ for which the product abc is minimal.

2002 AMC 10, 1

Tags: ratio
The ratio $\dfrac{(2^4)^8}{(4^8)^2}$ equals $\textbf{(A) }\dfrac14\qquad\textbf{(B) }\dfrac12\qquad\textbf{(C) }1\qquad\textbf{(D) }2\qquad\textbf{(E) }8$

2017 Bosnia and Herzegovina Team Selection Test, Problem 1

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

2003 Moldova Team Selection Test, 1

Each side of an arbitrarly triangle is divided into $ 2002$ congruent segments. After that, each vertex is joined with all "division" points on the opposite side. Prove that the number of the regions formed, in which the triangle is divided, is divisible by $ 6$. [i]Proposer[/i]: [b]Dorian Croitoru[/b]

May Olympiad L2 - geometry, 2012.3

Given Triangle $ABC$, $\angle B= 2 \angle C$, and $\angle A>90^\circ$. Let $M$ be midpoint of $BC$. Perpendicular of $AC$ at $C$ intersects $AB$ at $D$. Show $\angle AMB = \angle DMC$ [hide]If possible, don't use projective geometry[/hide]

1987 China Team Selection Test, 1

Given a convex figure in the Cartesian plane that is symmetric with respect of both axis, we construct a rectangle $A$ inside it with maximum area (over all posible rectangles). Then we enlarge it with center in the center of the rectangle and ratio lamda such that is covers the convex figure. Find the smallest lamda such that it works for all convex figures.