Found problems: 1342
2012 Tournament of Towns, 6
We attempt to cover the plane with an infinite sequence of rectangles, overlapping allowed.
(a) Is the task always possible if the area of the $n$th rectangle is $n^2$ for each $n$?
(b) Is the task always possible if each rectangle is a square, and for any number $N$, there exist squares with total area greater than $N$?
2012 Putnam, 6
Let $f(x,y)$ be a continuous, real-valued function on $\mathbb{R}^2.$ Suppose that, for every rectangular region $R$ of area $1,$ the double integral of $f(x,y)$ over $R$ equals $0.$ Must $f(x,y)$ be identically $0?$
2023 Sharygin Geometry Olympiad, 2
The diagonals of a rectangle $ABCD$ meet at point $E$. A circle centered at $E$ lies inside the rectangle. Let $CF$, $DG$, $AH$ be the tangents to this circle from $C$, $D$, $A$; let $CF$ meet $DG$ at point $I$, $EI$ meet $AD$ at point $J$, and $AH$ meet $CF$ at point $L$. Prove that $LJ$ is perpendicular to $AD$.
2000 Iran MO (3rd Round), 2
Circles $ C_1$ and $ C_2$ with centers at $ O_1$ and $ O_2$ respectively meet at points $ A$ and $ B$. The radii $ O_1B$ and $ O_2B$ meet $ C_1$ and $ C_2$ at $ F$ and$ E$. The line through $ B$ parallel to $ EF$ intersects $ C_1$ again at $ M$ and $ C_2$ again at $ N$. Prove that $ MN \equal{} AE \plus{} AF$.
2009 AMC 10, 24
The keystone arch is an ancient architectural feature. It is composed of congruent isosceles trapezoids fitted together along the non-parallel sides, as shown. The bottom sides of the two end trapezoids are horizontal. In an arch made with $ 9$ trapezoids, let $ x$ be the angle measure in degrees of the larger interior angle of the trapezoid. What is $ x$?
[asy]unitsize(4mm);
defaultpen(linewidth(.8pt));
int i;
real r=5, R=6;
path t=r*dir(0)--r*dir(20)--R*dir(20)--R*dir(0);
for(i=0; i<9; ++i)
{
draw(rotate(20*i)*t);
}
draw((-r,0)--(R+1,0));
draw((-R,0)--(-R-1,0));[/asy]$ \textbf{(A)}\ 100 \qquad
\textbf{(B)}\ 102 \qquad
\textbf{(C)}\ 104 \qquad
\textbf{(D)}\ 106 \qquad
\textbf{(E)}\ 108$
2012 Bundeswettbewerb Mathematik, 4
A rectangle with the side lengths $a$ and $b$ with $a <b$ should be placed in a right-angled coordinate system so that there is no point with integer coordinates in its interior or on its edge.
Under what necessary and at the same time sufficient conditions for $a$ and $b$ is this possible?
2000 Manhattan Mathematical Olympiad, 4
Three rectangles, each of area $6$ square inches, are placed inside a $4$ in. by $4$ in. square. Prove that, no matter how the three rectangles are shaped and arranged, (for example, like in the picture below), one can find two of them which have a common area of at least $2/3$ square inches.
2013 Stars Of Mathematics, 2
Three points inside a rectangle determine a triangle. A fourth point is taken inside the triangle.
i) Prove at least one of the three concave quadrilaterals formed by these four points has perimeter lesser than that of the rectangle.
ii) Assuming the three points inside the rectangle are three corners of it, prove at least two of the three concave quadrilaterals formed by these four points have perimeters lesser than that of the rectangle.
[i](Dan Schwarz)[/i]
1996 Baltic Way, 5
Let $ABCD$ be a cyclic convex quadrilateral and let $r_a,r_b,r_c,r_d$ be the radii of the circles inscribed in the triangles $BCD, ACD, ABD, ABC$, respectively. Prove that $r_a+r_c=r_b+r_d$.
2016 All-Russian Olympiad, 6
A square is partitioned in $n^2\geq 4$ rectanles using $2(n-1)$ lines,$n-1$ of which,are parallel to the one side of the square,$n-1$ are parallel to the other side.Prove that we can choose $2n$ rectangles of the partition,such that,for each two of them,we can place the one inside the other (possibly with rotation).
1994 IberoAmerican, 2
Let $ ABCD$ a cuadrilateral inscribed in a circumference. Suppose that there is a semicircle with its center on $ AB$, that
is tangent to the other three sides of the cuadrilateral.
(i) Show that $ AB \equal{} AD \plus{} BC$.
(ii) Calculate, in term of $ x \equal{} AB$ and $ y \equal{} CD$, the maximal area that can be reached for such quadrilateral.
2018 Harvard-MIT Mathematics Tournament, 10
Let $n$ and $m$ be positive integers in the range $[1, 10^{10}]$. Let $R$ be the rectangle with corners at $(0, 0), (n, 0), (n, m), (0, m)$ in the coordinate plane. A simple non-self-intersecting quadrilateral with vertices at integer coordinates is called [i]far-reaching[/i] if each of its vertices lie on or inside $R$, but each side of $R$ contains at least one vertex of the quadrilateral. Show that there is a far-reaching quadrilateral with area at most $10^6$.
2010 Tournament Of Towns, 6
Each cell of a $1000\times 1000$ table contains $0$ or $1$. Prove that one can either cut out $990$ rows so that at least one $1$ remains in each column, or cut out $990$ columns so that at least one $0$ remains in each row.
2012 Romanian Masters In Mathematics, 5
Given a positive integer $n\ge 3$, colour each cell of an $n\times n$ square array with one of $\lfloor (n+2)^2/3\rfloor$ colours, each colour being used at least once. Prove that there is some $1\times 3$ or $3\times 1$ rectangular subarray whose three cells are coloured with three different colours.
[i](Russia) Ilya Bogdanov, Grigory Chelnokov, Dmitry Khramtsov[/i]
1979 Poland - Second Round, 6
On the side $ \overline{DC} $ of the rectangle $ ABCD $ in which $ \frac{AB}{AD} = \sqrt{2} $ a semicircle is built externally. Any point $ M $ of the semicircle is connected by segments with $ A $ and $ B $ to obtain points $ K $ and $ L $ on $ \overline{DC} $, respectively. Prove that $ DL^2 + KC^2 = AB^2 $.
1961 All Russian Mathematical Olympiad, 012
Given $120$ unit squares arbitrarily situated in the $20\times 25$ rectangle. Prove that you can place a circle with the unit diameter without intersecting any of the squares.
2003 Tournament Of Towns, 4
In a triangle $ABC$, let $H$ be the point of intersection of altitudes, $I$ the center of incircle, $O$ the center of circumcircle, $K$ the point where the incircle touches $BC$. Given that $IO$ is parallel to $BC$, prove that $AO$ is parallel to $HK$.
2008 Hungary-Israel Binational, 3
A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary.
[i]Author: Kei Irie, Japan[/i]
1988 AMC 12/AHSME, 20
In one of the adjoining figures a square of side $2$ is dissected into four pieces so that $E$ and $F$ are the midpoints of opposite sides and $AG$ is perpendicular to $BF$. These four pieces can then be reassembled into a rectangle as shown in the second figure. The ratio of height to base, $XY$ / $YZ$, in this rectangle is
[asy]
size(180);
defaultpen(linewidth(0.7)+fontsize(10));
pair A=(0,1), B=(0,-1), C=(2,-1), D=(2,1), E=(1,-1), F=(1,1), G=(.8,.6);
pair X=(4,sqrt(5)), Y=(4,-sqrt(5)), Z=(4+2/sqrt(5),-sqrt(5)), W=(4+2/sqrt(5),sqrt(5)), T=(4,0), U=(4+2/sqrt(5),-4/sqrt(5)), V=(4+2/sqrt(5),1/sqrt(5));
draw(A--B--C--D--A^^B--F^^E--D^^A--G^^rightanglemark(A,G,F));
draw(X--Y--Z--W--X^^T--V--X^^Y--U);
label("A", A, NW);
label("B", B, SW);
label("C", C, SE);
label("D", D, NE);
label("E", E, S);
label("F", F, N);
label("G", G, E);
label("X", X, NW);
label("Y", Y, SW);
label("Z", Z, SE);
label("W", W, NE);
[/asy]
$ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 1+2\sqrt{3}\qquad\textbf{(C)}\ 2\sqrt{5}\qquad\textbf{(D)}\ \frac{8+4\sqrt{3}}{3}\qquad\textbf{(E)}\ 5 $
2005 IberoAmerican, 2
A flea jumps in a straight numbered line. It jumps first from point $0$ to point $1$. Afterwards, if its last jump was from $A$ to $B$, then the next jump is from $B$ to one of the points $B + (B - A) - 1$, $B + (B - A)$, $B + (B-A) + 1$.
Prove that if the flea arrived twice at the point $n$, $n$ positive integer, then it performed at least $\lceil 2\sqrt n\rceil$ jumps.
1998 AMC 12/AHSME, 11
Let R be a rectangle. How many circles in the plane of R have a diameter both of whose endpoints are vertices of R?
$ \textbf{(A)}\ 1\qquad
\textbf{(B)}\ 2\qquad
\textbf{(C)}\ 4\qquad
\textbf{(D)}\ 5\qquad
\textbf{(E)}\ 6$
2023 Czech-Polish-Slovak Junior Match, 6
Given a rectangle $ABCD$. Points $E$ and $F$ lie on sides $BC$ and $CD$ respectively so that the area of triangles $ABE$, $ECF$, $FDA$ is equal to $1$. Determine the area of triangle $AEF$.
2022 Singapore MO Open, Q2
Prove that if the length and breadth of a rectangle are both odd integers, then there does not exist a point $P$ inside the rectangle such that each of the distances from $P$ to the 4 corners of the rectangle is an integer.
1995 Portugal MO, 3
Three ants are at three corners of a rectangle. It is assumed that each ant moves only when the other two are stopped and always parallel to the line defined by them. Will be is it possible that the three ants are simultaneously at midpoints on the sides of the rectangle?
2009 USA Team Selection Test, 2
Let $ ABC$ be an acute triangle. Point $ D$ lies on side $ BC$. Let $ O_B, O_C$ be the circumcenters of triangles $ ABD$ and $ ACD$, respectively. Suppose that the points $ B, C, O_B, O_C$ lies on a circle centered at $ X$. Let $ H$ be the orthocenter of triangle $ ABC$. Prove that $ \angle{DAX} \equal{} \angle{DAH}$.
[i]Zuming Feng.[/i]