This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2003 AMC 8, 10

$\textbf{Bake Sale}$ Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies di ffer, as shown. $\circ$ Art's cookies are trapezoids: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(5,0)--(5,3)--(2,3)--cycle); draw(rightanglemark((5,3), (5,0), origin)); label("5 in", (2.5,0), S); label("3 in", (5,1.5), E); label("3 in", (3.5,3), N);[/asy] $\circ$ Roger's cookies are rectangles: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(4,0)--(4,2)--(0,2)--cycle); draw(rightanglemark((4,2), (4,0), origin)); draw(rightanglemark((0,2), origin, (4,0))); label("4 in", (2,0), S); label("2 in", (4,1), E);[/asy] $\circ$ Paul's cookies are parallelograms: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle); draw((2.5,2)--(2.5,0), dashed); draw(rightanglemark((2.5,2),(2.5,0), origin)); label("3 in", (1.5,0), S); label("2 in", (2.5,1), W);[/asy] $\circ$ Trisha's cookies are triangles: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(3,4)--cycle); draw(rightanglemark((3,4),(3,0), origin)); label("3 in", (1.5,0), S); label("4 in", (3,2), E);[/asy] Each friend uses the same amount of dough, and Art makes exactly 12 cookies. How many cookies will be in one batch of Trisha's cookies? $ \textbf{(A)}\ 10\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 24$

2012 NIMO Summer Contest, 15

In the diagram below, square $ABCD$ with side length 23 is cut into nine rectangles by two lines parallel to $\overline{AB}$ and two lines parallel to $\overline{BC}$. The areas of four of these rectangles are indicated in the diagram. Compute the largest possible value for the area of the central rectangle. [asy] size(250); defaultpen (linewidth (0.7) + fontsize (10)); draw ((0,0)--(23,0)--(23,23)--(0,23)--cycle); label("$A$", (0,23), NW); label("$B$", (23, 23), NE); label("$C$", (23,0), SE); label("$D$", (0,0), SW); draw((0,6)--(23,6)); draw((0,19)--(23,19)); draw((5,0)--(5,23)); draw((12,0)--(12,23)); label("13", (17/2, 21)); label("111",(35/2,25/2)); label("37",(17/2,3)); label("123",(2.5,12.5));[/asy] [i]Proposed by Lewis Chen[/i]

Novosibirsk Oral Geo Oly IX, 2022.1

A ball was launched on a rectangular billiard table at an angle of $45^o$ to one of the sides. Reflected from all sides (the angle of incidence is equal to the angle of reflection), he returned to his original position . It is known that one of the sides of the table has a length of one meter. Find the length of the second side. [img]https://cdn.artofproblemsolving.com/attachments/3/d/e0310ea910c7e3272396cd034421d1f3e88228.png[/img]

2020 BMT Fall, 16

Let $T$ be the answer to question $18$. Rectangle $ZOMR$ has $ZO = 2T$ and $ZR = T$. Point $B$ lies on segment $ZO$, $O'$ lies on segment $OM$, and $E$ lies on segment $RM$ such that $BR = BE = EO'$, and $\angle BEO' = 90^o$. Compute $2(ZO + O'M + ER)$. PS. You had better calculate it in terms of $T$.

2009 Princeton University Math Competition, 3

A rectangular piece of paper $ABCD$ has sides of lengths $AB = 1$, $BC = 2$. The rectangle is folded in half such that $AD$ coincides with $BC$ and $EF$ is the folding line. Then fold the paper along a line $BM$ such that the corner $A$ falls on line $EF$. How large, in degrees, is $\angle ABM$? [asy] size(180); pathpen = rgb(0,0,0.6)+linewidth(1); pointpen = black+linewidth(3); pointfontpen = fontsize(10); pen dd = rgb(0,0,0.6) + linewidth(0.7) + linetype("4 4"), dr = rgb(0.8,0,0), dg = rgb(0,0.6,0), db = rgb(0,0,0.6)+linewidth(1); pair A=(0,1), B=(0,0), C=(2,0), D=(2,1), E=A/2, F=(2,.5), M=(1/3^.5,1), N=reflect(B,M)*A; D(B--M--D("N",N,NE)--B--D("C",C,SE)--D("D",D,NE)--M); D(D("M",M,plain.N)--D("A",A,NW)--D("B",B,SW),dd); D(D("E",E,W)--D("F",F,plain.E),dd); [/asy]

Estonia Open Junior - geometry, 1995.1.2

Two circles of equal radius intersect at two distinct points $A$ and $B$. Let their radii $r$ and their midpoints respectively be $O_1$ and $O_2$. Find the greatest possible value of the area of the rectangle $O_1AO_2B$.

1991 All Soviet Union Mathematical Olympiad, 540

$ABCD$ is a rectangle. Points $K, L, M, N$ are chosen on $AB, BC, CD, DA$ respectively so that $KL$ is parallel to $MN$, and $KM$ is perpendicular to $LN$. Show that the intersection of $KM$ and $LN$ lies on $BD$.

2011 Tournament of Towns, 2

A rectangle is divided by $10$ horizontal and $10$ vertical lines into $121$ rectangular cells. If $111$ of them have integer perimeters, prove that they all have integer perimeters.

2005 All-Russian Olympiad Regional Round, 10.8

A rectangle is drawn on checkered paper, the sides of which form angles of $45^o$ with the grid lines, and the vertices do not lie on the grid lines. Can an odd number of grid lines intersect each side of a rectangle?

2004 Tournament Of Towns, 7

Let A and B be two rectangles such that it is possible to get rectangle similar to A by putting together rectangles equal to B. Show that it is possible to get rectangle similar to B by putting together rectangles equal to A.

2012 APMO, 2

Into each box of a $ 2012 \times 2012 $ square grid, a real number greater than or equal to $ 0 $ and less than or equal to $ 1 $ is inserted. Consider splitting the grid into $2$ non-empty rectangles consisting of boxes of the grid by drawing a line parallel either to the horizontal or the vertical side of the grid. Suppose that for at least one of the resulting rectangles the sum of the numbers in the boxes within the rectangle is less than or equal to $ 1 $, no matter how the grid is split into $2$ such rectangles. Determine the maximum possible value for the sum of all the $ 2012 \times 2012 $ numbers inserted into the boxes.

2024 Spain Mathematical Olympiad, 5

Given two points $p_1=(x_1, y_1)$ and $p_2=(x_2, y_2)$ on the plane, denote by $\mathcal{R}(p_1,p_2)$ the rectangle with sides parallel to the coordinate axes and with $p_1$ and $p_2$ as opposite corners, that is, \[\{(x,y)\in \mathbb{R}^2:\min\{x_1, x_2\}\leq x\leq \max\{x_1, x_2\},\min\{y_1, y_2\}\leq y\leq \max\{y_1, y_2\}\}.\] Find the largest value of $k$ for which the following statement is true: for all sets $\mathcal{S}\subset\mathbb{R}^2$ with $|\mathcal{S}|=2024$, there exist two points $p_1, p_2\in\mathcal{S}$ such that $|\mathcal{S}\cap\mathcal{R}(p_1, p_2)|\geq k$.

2003 Tuymaada Olympiad, 1

A $2003\times 2004$ rectangle consists of unit squares. We consider rhombi formed by four diagonals of unit squares. What maximum number of such rhombi can be arranged in this rectangle so that no two of them have any common points except vertices? [i]Proposed by A. Golovanov[/i]

2004 Italy TST, 1

At the vertices $A, B, C, D, E, F, G, H$ of a cube, $2001, 2002, 2003, 2004, 2005, 2008, 2007$ and $2006$ stones respectively are placed. It is allowed to move a stone from a vertex to each of its three neighbours, or to move a stone to a vertex from each of its three neighbours. Which of the following arrangements of stones at $A, B, \ldots , H$ can be obtained? $(\text{a})\quad 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2005;$ $(\text{b})\quad 2002, 2003, 2004, 2001, 2006, 2005, 2008, 2007;$ $(\text{c})\quad 2004, 2002, 2003, 2001, 2005, 2008, 2007, 2006.$

1987 AMC 8, 12

What fraction of the large $12$ by $18$ rectangular region is shaded? [asy] draw((0,0)--(18,0)--(18,12)--(0,12)--cycle); draw((0,6)--(18,6)); for(int a=6; a<12; ++a) { draw((1.5a,0)--(1.5a,6)); } fill((15,0)--(18,0)--(18,6)--(15,6)--cycle,black); label("0",(0,0),W); label("9",(9,0),S); label("18",(18,0),S); label("6",(0,6),W); label("12",(0,12),W); [/asy] $\text{(A)}\ \frac{1}{108} \qquad \text{(B)}\ \frac{1}{18} \qquad \text{(C)}\ \frac{1}{12} \qquad \text{(D)}\ \frac29 \qquad \text{(E)}\ \frac13$

2000 AMC 8, 19

Three circular arcs of radius $5$ units bound the region shown. Arcs $AB$ and $AD$ are quarter-circles, and arc $BCD$ is a semicircle. What is the area, in square units, of the region? [asy] pair A,B,C,D; A = (0,0); B = (-5,5); C = (0,10); D = (5,5); draw(arc((-5,0),A,B,CCW)); draw(arc((0,5),B,D,CW)); draw(arc((5,0),D,A,CCW)); label("$A$",A,S); label("$B$",B,W); label("$C$",C,N); label("$D$",D,E); [/asy] $\text{(A)}\ 25 \qquad \text{(B)}\ 10 + 5\pi \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 50 + 5\pi \qquad \text{(E)}\ 25\pi$

2004 Korea Junior Math Olympiad, 4

$ABCD$ is a cyclic quadrilateral inscribed in circle $O$. Let $O_1$ be the $A$-excenter of $ABC$ and $O_2$ the $A$-excenter of $ABD$. Show that $A, B, O_1, O_2$ is concyclic, and $O$ passes through the center of $(ABO_1O_2)$. Recall that for concyclic $X, Y, Z, W$, the notation $(XYZW)$ denotes the circumcircle of $XYZW$.

2003 Manhattan Mathematical Olympiad, 1

The polygon ABCDEFG (shown on the right) is a regular octagon. Prove that the area of the rectangle $ADEH$ is one half the area of the whole polygon $ABCDEFGH$. [asy] draw((0,1.414)--(1.414,0)--(3.414,0)--(4.828,1.414)--(4.828,3.414)--(3.414,4.828)--(1.414,4.828)--(0,3.414)--(0,1.414)); fill((0,1.414)--(0,3.414)--(4.828,3.414)--(4.828,1.414)--cycle, mediumgrey); label("$B$",(1.414,0),SW); label("$C$",(3.414,0),SE); label("$D$",(4.828,1.414),SE); label("$E$",(4.828,3.414),NE); label("$F$",(3.414,4.828),NE); label("$G$",(1.414,4.828),NW); label("$H$",(0,3.414),NW); label("$A$",(0,1.414),SW); [/asy]

2012 IMO Shortlist, C5

The columns and the row of a $3n \times 3n$ square board are numbered $1,2,\ldots ,3n$. Every square $(x,y)$ with $1 \leq x,y \leq 3n$ is colored asparagus, byzantium or citrine according as the modulo $3$ remainder of $x+y$ is $0,1$ or $2$ respectively. One token colored asparagus, byzantium or citrine is placed on each square, so that there are $3n^2$ tokens of each color. Suppose that one can permute the tokens so that each token is moved to a distance of at most $d$ from its original position, each asparagus token replaces a byzantium token, each byzantium token replaces a citrine token, and each citrine token replaces an asparagus token. Prove that it is possible to permute the tokens so that each token is moved to a distance of at most $d+2$ from its original position, and each square contains a token with the same color as the square.

1990 AIME Problems, 14

The rectangle $ABCD$ below has dimensions $AB = 12 \sqrt{3}$ and $BC = 13 \sqrt{3}$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $P$. If triangle $ABP$ is cut out and removed, edges $\overline{AP}$ and $\overline{BP}$ are joined, and the figure is then creased along segments $\overline{CP}$ and $\overline{DP}$, we obtain a triangular pyramid, all four of whose faces are isosceles triangles. Find the volume of this pyramid. [asy] pair D=origin, A=(13,0), B=(13,12), C=(0,12), P=(6.5, 6); draw(B--C--P--D--C^^D--A); filldraw(A--P--B--cycle, gray, black); label("$A$", A, SE); label("$B$", B, NE); label("$C$", C, NW); label("$D$", D, SW); label("$P$", P, N); label("$13\sqrt{3}$", A--D, S); label("$12\sqrt{3}$", A--B, E);[/asy]

2023 Kyiv City MO, Problem 1

The rectangle is cut into 6 squares, as shown on the figure below. The gray square in the middle has a side equal to 1. What is the area of the rectangle? [img]https://i.ibb.co/gg1tBTN/Kyiv-MO-2023-7-1.png[/img]

2010 May Olympiad, 2

Let $ABCD$ be a rectangle and the circle of center $D$ and radius $DA$, which cuts the extension of the side $AD$ at point $P$. Line $PC$ cuts the circle at point $Q$ and the extension of the side $AB$ at point $R$. Show that $QB = BR$.

1999 Switzerland Team Selection Test, 7

A square is dissected into rectangles with sides parallel to the sides of the square. For each of these rectangles, the ratio of its shorter side to its longer side is considered. Show that the sum of all these ratios is at least $1$.

2014 Purple Comet Problems, 3

The diagram below shows a rectangle with side lengths $36$ and $48$. Each of the sides is trisected and edges are added between the trisection points as shown. Then the shaded corner regions are removed, leaving the octagon which is not shaded in the diagram. Find the perimeter of this octagon. [asy] size(4cm); dotfactor=3.5; pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,12); B=(0,24); C=(16,36); D=(32,36); E=(48,24); F=(48,12); G=(32,0); H=(16,0); W=origin; X=(0,36); Y=(48,36); Z=(48,0); filldraw(W--A--H--cycle^^B--X--C--cycle^^D--Y--E--cycle^^F--Z--G--cycle,rgb(.76,.76,.76)); draw(W--X--Y--Z--cycle,linewidth(1.2)); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); [/asy]

2003 Costa Rica - Final Round, 4

$S_{1}$ and $S_{2}$ are two circles that intersect at distinct points $P$ and $Q$. $\ell_{1}$ and $\ell_{2}$ are two parallel lines through $P$ and $Q$. $\ell_{1}$ intersects $S_{1}$ and $S_{2}$ at points $A_{1}$ and $A_{2}$, different from $P$, respectively. $\ell_{2}$ intersects $S_{1}$ and $S_{2}$ at points $B_{1}$ and $B_{2}$, different from $Q$, respectively. Show that the perimeters of the triangles $A_{1}QA_{2}$ and $B_{1}PB_{2}$ are equal.