This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2003 AMC 12-AHSME, 15

A regular octagon $ ABCDEFGH$ has an area of one square unit. What is the area of the rectangle $ ABEF$? [asy]unitsize(8mm); defaultpen(linewidth(.8pt)+fontsize(6pt)); pair C=dir(22.5), B=dir(67.5), A=dir(112.5), H=dir(157.5), G=dir(202.5), F=dir(247.5), E=dir(292.5), D=dir(337.5); draw(A--B--C--D--E--F--G--H--cycle); label("$A$",A,NNW); label("$B$",B,NNE); label("$C$",C,ENE); label("$D$",D,ESE); label("$E$",E,SSE); label("$F$",F,SSW); label("$G$",G,WSW); label("$H$",H,WNW);[/asy]$ \textbf{(A)}\ 1\minus{}\frac{\sqrt2}{2} \qquad \textbf{(B)}\ \frac{\sqrt2}{4} \qquad \textbf{(C)}\ \sqrt2\minus{}1 \qquad \textbf{(D)}\ \frac12 \qquad \textbf{(E)}\ \frac{1\plus{}\sqrt2}{4}$

2022 JHMT HS, 10

Let $R$ be the rectangle in the coordinate plane with corners $(0, 0)$, $(20, 0)$, $(20, 22)$, and $(0, 22)$, and partition $R$ into a $20\times 22$ grid of unit squares. For a given line in the coordinate plane, let its [i]pixelation[/i] be the set of grid squares in $R$ that contain part of the line in their interior. If $P$ is a point chosen uniformly at random in $R$, then compute the expected number of sets of grid squares that are pixelations of some line through $P$.

2011 Paraguay Mathematical Olympiad, 5

In a rectangle triangle, let $I$ be its incenter and $G$ its geocenter. If $IG$ is parallel to one of the catheti and measures $10 cm$, find the lengths of the two catheti of the triangle.

2008 ITest, 24

In order to earn her vacation spending money, Alexis helped her mother remove weeds from the garden. When she was done, she came into the house to put away her gardening gloves and change into clean clothes. On her way to her room she notices Joshua with his face to the floor in the family room, looking pretty silly. "Josh, did you know you lose IQ points for sniffing the carpet?" "Shut up. I'm $\textit{not}$ sniffing the carpet. I'm $\textit{doing something}$." "Sure, if $\textit{sniffing the carpet}$ counts as $\textit{doing something}.$" At this point Alexis stands over her twin brother grinning, trying to see how silly she can make him feel. Joshua climbs to his feet and stands on his toes to make himself a half inch taller than his sister, who is ordinarily a half inch taller than Joshua. "I'm measuring something. I'm $\textit{designing}$ something." Alexis stands on her toes too, reminding her brother that she is still taller than he. "When you're done, can you design me a dress?" "Very funny." Joshua walks to the table and points to some drawings. "I'm designing the sand castle I want to build at the beach. Everything needs to be measured out so that I can build something awesome." "And this requires sniffing carpet?" inquires Alexis, who is just a little intrigued by her brother's project. "I was imagining where to put the base of a spiral staircase. Everything needs to be measured out correctly. See, the castle walls will be in the shape of a rectangle, like this room. The center of the staircase will be $9$ inches from one of the corners, $15$ inches from another, $16$ inches from another, and some whole number of inches from the furthest corner." Joshua shoots Alexis a wry smile. The twins liked to challenge each other, and Alexis knew she had to find the distance from the center of the staircase to the fourth corner of the castle on her own, or face Joshua's pestering, which might last for hours or days. Find the distance from the center of the staircase to the furthest corner of the rectangular castle, assuming all four of the distances to the corners are described as distances on the same plane (the ground).

2023 Israel National Olympiad, P5

Let $ABC$ be an equilateral triangle whose sides have length $1$. The midpoints of $AB,BC$ are $M,N$ respectively. Points $K,L$ were chosen on $AC$ so that $KLMN$ is a rectangle. Inside this rectangle are three semi-circles with the same radius, as in the picture (the endpoints are on the edges of the rectangle, and the arcs are tangent). Find the minimum possible value of the radii of the semi-circles.

2006 Turkey Team Selection Test, 2

How many ways are there to divide a $2\times n$ rectangle into rectangles having integral sides, where $n$ is a positive integer?

1976 Euclid, 1

Source: 1976 Euclid Part A Problem 1 ----- In the diagram, $ABCD$ and $EFGH$ are similar rectangles. $DK:KC=3:2$. Then rectangle $ABCD:$ rectangle $EFGH$ is equal to [asy]draw((75,0)--(0,0)--(0,50)--(75,50)--(75,0)--(55,0)--(55,20)--(100,20)--(100,0)--cycle); draw((55,5)--(60,5)--(60,0)); draw((75,5)--(80,5)--(80,0)); label("A",(0,50),NW); label("B",(0,0),SW); label("C",(75,0),SE); label("D",(75,50),NE); label("E",(55,20),NW); label("F",(55,0),SW); label("G",(100,0),SE); label("H",(100,20),NE); label("K",(75,20),NE);[/asy] $\textbf{(A) } 3:2 \qquad \textbf{(B) } 9:4 \qquad \textbf{(C) } 5:2 \qquad \textbf{(D) } 25:4 \qquad \textbf{(E) } 6:2$

1983 Czech and Slovak Olympiad III A, 3

An $8\times 8$ chessboard is made of unit squares. We put a rectangular piece of paper with sides of length 1 and 2. We say that the paper and a single square overlap if they share an inner point. Determine the maximum number of black squares that can overlap the paper.

1996 IberoAmerican, 3

We have a grid of $k^2-k+1$ rows and $k^2-k+1$ columns, where $k=p+1$ and $p$ is prime. For each prime $p$, give a method to put the numbers 0 and 1, one number for each square in the grid, such that on each row there are exactly $k$ 0's, on each column there are exactly $k$ 0's, and there is no rectangle with sides parallel to the sides of the grid with 0s on each four vertices.

2022 OMpD, 2

Let $ABCD$ be a rectangle. The point $E$ lies on side $ \overline{AB}$ and the point $F$ is lies side $ \overline{AD}$, such that $\angle FEC=\angle CEB$ and $\angle DFC=\angle CFE$. Determine the measure of the angle $\angle FCE$ and the ratio $AD/AB$.

2012 AMC 10, 21

Let points $A=(0,0,0)$, $B=(1,0,0)$, $C=(0,2,0)$, and $D=(0,0,3)$. Points $E,F,G$, and $H$ are midpoints of line segments $\overline{BD},\overline{AB},\overline{AC}$, and $\overline{DC}$ respectively. What is the area of $EFGH$? $ \textbf{(A)}\ \sqrt2 \qquad\textbf{(B)}\ \frac{2\sqrt5}{3} \qquad\textbf{(C)}\ \frac{3\sqrt5}{4} \qquad\textbf{(D)}\ \sqrt3 \qquad\textbf{(E)}\ \frac{2\sqrt7}{3} $

2003 Federal Math Competition of S&M, Problem 3

Let $ABCD$ be a rectangle. Determine the set of all points $P$ from the region between the parallel lines $AB$ and $CD$ such that $\angle APB=\angle CPD$.

2009 Purple Comet Problems, 14

Rectangle $ABCD$ measures $70$ by $40$. Eighteen points (including $A$ and $C$) are marked on the diagonal $AC$ dividing the diagonal into $17$ congruent pieces. Twenty-two points (including A and B) are marked on the side $AB$ dividing the side into $21$ congruent pieces. Seventeen non-overlapping triangles are constructed as shown. Each triangle has two vertices that are two of these adjacent marked points on the side of the rectangle, and one vertex that is one of the marked points along the diagonal of the rectangle. Only the left $17$ of the $21$ congruent pieces along the side of the rectangle are used as bases of these triangles. Find the sum of the areas of these $17$ triangles. [asy] size(200); defaultpen(linewidth(0.8)); pair A=origin,B=(21,0),C=(21,12),D=(0,12); path P=origin; draw(A--B--C--D--cycle--C); for (int r = 1; r <= 17;++r) { P=P--(21*r/17,12*r/17)--(r,0); } P=P--cycle; filldraw(P,gray(0.7)); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); [/asy]

2016 Oral Moscow Geometry Olympiad, 2

In the rectangle there is a broken line, the neighboring links of which are perpendicular and equal to the smaller side of the rectangle (see the figure). Find the ratio of the sides of the rectangle. [img]https://2.bp.blogspot.com/-QYj53KiPTJ8/XT_mVIw876I/AAAAAAAAKbE/gJ1roU4Bx-kfGVfJxYMAuLE0Ax0glRbegCK4BGAYYCw/s1600/oral%2Bmoscow%2B2016%2B8.9%2Bp2.png[/img]

2021 Regional Olympiad of Mexico West, 6

Let $n$ be an integer greater than $3$. Show that it is possible to divide a square into $n^2 + 1$ or more disjointed rectangles and with sides parallel to those of the square so that any line parallel to one of the sides intersects at most the interior of $n$ rectangles. Note: We say that two rectangles are [i]disjointed [/i] if they do not intersect or only intersect at their perimeters.

2002 Polish MO Finals, 2

On sides $AC$ and $BC$ of acute-angled triangle $ABC$ rectangles with equal areas $ACPQ$ and $BKLC$ were built exterior. Prove that midpoint of $PL$, point $C$ and center of circumcircle are collinear.

1990 APMO, 5

Show that for every integer $n \geq 6$, there exists a convex hexagon which can be dissected into exactly $n$ congruent triangles.

1986 IMO Longlists, 23

Let $I$ and $J$ be the centers of the incircle and the excircle in the angle $BAC$ of the triangle $ABC$. For any point $M$ in the plane of the triangle, not on the line $BC$, denote by $I_M$ and $J_M$ the centers of the incircle and the excircle (touching $BC$) of the triangle $BCM$. Find the locus of points $M$ for which $II_MJJ_M$ is a rectangle.

2019 India IMO Training Camp, P1

Let the points $O$ and $H$ be the circumcenter and orthocenter of an acute angled triangle $ABC.$ Let $D$ be the midpoint of $BC.$ Let $E$ be the point on the angle bisector of $\angle BAC$ such that $AE\perp HE.$ Let $F$ be the point such that $AEHF$ is a rectangle. Prove that $D,E,F$ are collinear.

Cono Sur Shortlist - geometry, 1993.4

Is it possible to locate in a rectangle of $5$ cm by $ 8$ cm, $51$ circles of diameter $ 1$ cm, so that they don't overlap? Could it be possible for more than $40$ circles ?

1996 Putnam, 1

Find the least number $A$ such that for any two squares of combined area $1$, a rectangle of area $A$ exists such that the two squares can be packed in the rectangle (without the interiors of the squares overlapping) . You may assume the sides of the squares will be parallel to the sides of the rectangle.

1936 Moscow Mathematical Olympiad, 029

The lengths of a rectangle’s sides and of its diagonal are integers. Prove that the area of the rectangle is an integer multiple of $12$.

2002 Tuymaada Olympiad, 4

A rectangular table with 2001 rows and 2002 columns is partitioned into $1\times 2$ rectangles. It is known that any other partition of the table into $1\times 2$ rectangles contains a rectangle belonging to the original partition. Prove that the original partition contains two successive columns covered by 2001 horizontal rectangles. [i]Proposed by S. Volchenkov[/i]

2011 AMC 8, 19

How many rectangles are in this figure? [asy] pair A,B,C,D,E,F,G,H,I,J,K,L; A=(0,0); B=(20,0); C=(20,20); D=(0,20); draw(A--B--C--D--cycle); E=(-10,-5); F=(13,-5); G=(13,5); H=(-10,5); draw(E--F--G--H--cycle); I=(10,-20); J=(18,-20); K=(18,13); L=(10,13); draw(I--J--K--L--cycle);[/asy] $ \textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 12 $

2009 AIME Problems, 3

In rectangle $ ABCD$, $ AB\equal{}100$. Let $ E$ be the midpoint of $ \overline{AD}$. Given that line $ AC$ and line $ BE$ are perpendicular, find the greatest integer less than $ AD$.