Found problems: 1342
2004 May Olympiad, 2
Inside an $11\times 11$ square, Pablo drew a rectangle and extending its sides divided the square into $5$ rectangles, as shown in the figure.
[img]https://cdn.artofproblemsolving.com/attachments/5/a/7774da7085f283b3aae74fb5ff472572571827.gif[/img]
SofÃa did the same, but she also managed to make the lengths of the sides of the $5$ rectangles be whole numbers between $1$ and $10$, all different. Show a figure like the one Sofia made.
1969 IMO Shortlist, 9
$(BUL 3)$ One hundred convex polygons are placed on a square with edge of length $38 cm.$ The area of each of the polygons is smaller than $\pi cm^2,$ and the perimeter of each of the polygons is smaller than $2\pi cm.$ Prove that there exists a disk with radius $1$ in the square that does not intersect any of the polygons.
2007 Croatia Team Selection Test, 4
Given a finite string $S$ of symbols $X$ and $O$, we write $@(S)$ for the number of $X$'s in $S$ minus the number of $O$'s. (For example, $@(XOOXOOX) =-1$.) We call a string $S$ [b]balanced[/b] if every substring $T$ of (consecutive symbols) $S$ has the property $-2 \leq @(T) \leq 2$. (Thus $XOOXOOX$ is not balanced since it contains the sub-string $OOXOO$ whose $@$-value is $-3$.) Find, with proof, the number of balanced strings of length $n$.
V Soros Olympiad 1998 - 99 (Russia), 10.7
Cut the $10$ cm $\times 25$ cm rectangle into two pieces with one straight cut so that they can fit inside the $22.1 $ cm circle without crossing.
2002 Chile National Olympiad, 2
Determine all natural numbers $n$ for which it is possible to construct a rectangle of sides $15$ and $n$, with pieces congruent to:
[asy]
unitsize(0.6 cm);
draw((0,0)--(3,0));
draw((0,1)--(3,1));
draw((0,2)--(1,2));
draw((2,2)--(3,2));
draw((0,0)--(0,2));
draw((1,0)--(1,2));
draw((2,0)--(2,2));
draw((3,0)--(3,2));
draw((5,-0.5)--(6,-0.5));
draw((4,0.5)--(7,0.5));
draw((4,1.5)--(7,1.5));
draw((5,2.5)--(6,2.5));
draw((4,0.5)--(4,1.5));
draw((5,-0.5)--(5,2.5));
draw((6,-0.5)--(6,2.5));
draw((7,0.5)--(7,1.5));
[/asy]
The squares of the pieces have side $1$ and the pieces cannot overlap or leave free spaces
2007 Tuymaada Olympiad, 3
Several knights are arranged on an infinite chessboard. No square is attacked by more than one knight (in particular, a square occupied by a knight can be attacked by one knight but not by two). Sasha outlined a $ 14\times 16$ rectangle. What maximum number of knights can this rectangle contain?
2006 Junior Balkan MO, 4
Consider a $2n \times 2n$ board. From the $i$th line we remove the central $2(i-1)$ unit squares. What is the maximal number of rectangles $2 \times 1$ and $1 \times 2$ that can be placed on the obtained figure without overlapping or getting outside the board?
2010 Malaysia National Olympiad, 1
In the diagram, congruent rectangles $ABCD$ and $DEFG$ have a common vertex $D$. Sides $BC$ and $EF$ meet at $H$. Given that $DA = DE = 8$, $AB = EF = 12$, and $BH = 7$. Find the area of $ABHED$.
[img]https://cdn.artofproblemsolving.com/attachments/f/b/7225fa89097e7b20ea246b3aa920d2464080a5.png[/img]
1998 APMO, 4
Let $ABC$ be a triangle and $D$ the foot of the altitude from $A$. Let $E$ and $F$ lie on a line passing through $D$ such that $AE$ is perpendicular to $BE$, $AF$ is perpendicular to $CF$, and $E$ and $F$ are different from $D$. Let $M$ and $N$ be the midpoints of the segments $BC$ and $EF$, respectively. Prove that $AN$ is perpendicular to $NM$.
2020-21 IOQM India, 4
Let $ABCD$ be a rectangle in which $AB + BC + CD = 20$ and $AE = 9$ where $E$ is the midpoint of the side $BC$. Find the area of the rectangle.
2009 Sharygin Geometry Olympiad, 3
The bisectors of trapezoid's angles form a quadrilateral with perpendicular diagonals. Prove that this trapezoid is isosceles.
2011 AMC 10, 3
At a store, when a length is reported as $x$ inches that means the length is at least $x-0.5$ inches and at most $x+0.5$ inches. Suppose the dimensions of a rectangular tile are reported as $2$ inches by $3$ inches. In square inches, what is the minimum area for the rectangle?
$ \textbf{(A)}\ 3.75 \qquad
\textbf{(B)}\ 4.5 \qquad
\textbf{(C)}\ 5 \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 8.75 $
2021 Indonesia TST, G
Do there exist a rectangle that can be partitioned into a regular hexagon with side length $1$, and several right triangles with side lengths $1, \sqrt3 , 2$?
JBMO Geometry Collection, 2011
Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB,CD$ such that
\[\tfrac{AB}{AE}=\tfrac{CD}{DF}=n\]
If $S$ is the area of $AEFD$ show that ${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$
2006 Austrian-Polish Competition, 9
We have an 8x8 chessboard with 64 squares. Then we have 3x1 dominoes which cover exactly 3 squares. Such dominoes can only be moved parallel to the borders of the chessboard and also only if the passing squares are free. If no dominoes can be moved, then the position is called stable.
a. Find the smalles number of covered squares neccessary for a stable position.
b. Prove: There exist a stable position with only one square uncovered.
c. Find all Squares which are uncoverd in at least one position of b).
2022 Kosovo & Albania Mathematical Olympiad, 2
Consider a $5\times 5$ grid with $25$ cells. What is the least number of cells that should be colored, such that every $2\times 3$ or $3\times 2$ rectangle in the grid has at least two colored cells?
2006 Canada National Olympiad, 2
Let $ABC$ be acute triangle. Inscribe a rectangle $DEFG$ in this triangle such that $D\in AB,E\in AC,F\in BC,G\in BC$. Describe the locus of (i.e., the curve occupied by) the intersections of the diagonals of all possible rectangles $DEFG$.
2020 Switzerland - Final Round, 3
We are given $n$ distinct rectangles in the plane. Prove that between the $4n$ interior angles formed by these rectangles at least $4\sqrt n$ are distinct.
1963 German National Olympiad, 4
Consider a rectangle with sides $2a$ and $2b$, where $a > b$. There should be four congruent right triangles (one triangle at each vertex of this rectangle , whose legs are on the sides of the rectangle lie) must be cut off so that the remaining figure forms an octagon with sides of equal length. The side of the octagon is to be expressed in terms of a and $b$ and constructed from $a$ and $b$. Besides that it must be stated under which conditions the problem can be solved.
2014 National Olympiad First Round, 21
Let $ABCD$ be a trapezoid such that side $[AB]$ and side $[CD]$ are perpendicular to side $[BC]$. Let $E$ be a point on side $[BC]$ such that $\triangle AED$ is equilateral. If $|AB|=7$ and $|CD|=5$, what is the area of trapezoid $ABCD$?
$
\textbf{(A)}\ 27\sqrt{3}
\qquad\textbf{(B)}\ 42
\qquad\textbf{(C)}\ 24\sqrt{3}
\qquad\textbf{(D)}\ 40
\qquad\textbf{(E)}\ 36
$
2018 Vietnam Team Selection Test, 2
For every positive integer $m$, a $m\times 2018$ rectangle consists of unit squares (called "cell") is called [i]complete[/i] if the following conditions are met:
i. In each cell is written either a "$0$", a "$1$" or nothing;
ii. For any binary string $S$ with length $2018$, one may choose a row and complete the empty cells so that the numbers in that row, if read from left to right, produce $S$ (In particular, if a row is already full and it produces $S$ in the same manner then this condition ii. is satisfied).
A [i]complete[/i] rectangle is called [i]minimal[/i], if we remove any of its rows and then making it no longer [i]complete[/i].
a. Prove that for any positive integer $k\le 2018$ there exists a [i]minimal[/i] $2^k\times 2018$ rectangle with exactly $k$ columns containing both $0$ and $1$.
b. A [i]minimal[/i] $m\times 2018$ rectangle has exactly $k$ columns containing at least some $0$ or $1$ and the rest of columns are empty. Prove that $m\le 2^k$.
2010 Putnam, B2
Given that $A,B,$ and $C$ are noncollinear points in the plane with integer coordinates such that the distances $AB,AC,$ and $BC$ are integers, what is the smallest possible value of $AB?$
2012 Indonesia TST, 3
Suppose $l(M, XYZ)$ is a Simson line of the triangle $XYZ$ that passes through $M$.
Suppose $ABCDEF$ is a cyclic hexagon such that $l(A, BDF), l(B, ACE), l(D, ABF), l(E, ABC)$ intersect at a single point. Prove that $CDEF$ is a rectangle.
[color=blue]Should the first sentence read:
Suppose $l(M, XYZ)$ is a Simson line of the triangle $XYZ$ [u]with respect to[/u] $M$.
? Since it appears weird that a Simson line that passes a point is to be constructed. However, this is Unsolved after all, so I'm not sure.[/color]
1996 Swedish Mathematical Competition, 6
A rectangle is tiled with rectangles of size $6\times 1$. Prove that one of its side lengths is divisible by $6$.
1977 AMC 12/AHSME, 26
Let $a,b,c,$ and $d$ be the lengths of sides $MN,NP,PQ,$ and $QM$, respectively, of quadrilateral $MNPQ$. If $A$ is the area of $MNPQ$, then
$\textbf{(A) }A=\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is convex}$
$\textbf{(B) }A=\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a rectangle}$
$\textbf{(C) }A\le\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a rectangle}$
$\textbf{(D) }A\le\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a parallelogram}$
$\textbf{(E) }A\ge\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a parallelogram}$