This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2018 Germany Team Selection Test, 1

A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even. [i]Proposed by Jeck Lim, Singapore[/i]

2011 Mexico National Olympiad, 5

A $(2^n - 1) \times (2^n +1)$ board is to be divided into rectangles with sides parallel to the sides of the board and integer side lengths such that the area of each rectangle is a power of 2. Find the minimum number of rectangles that the board may be divided into.

2008 Romania National Olympiad, 4

Let $ ABCD$ be a rectangle with center $ O$, $ AB\neq BC$. The perpendicular from $ O$ to $ BD$ cuts the lines $ AB$ and $ BC$ in $ E$ and $ F$ respectively. Let $ M,N$ be the midpoints of the segments $ CD,AD$ respectively. Prove that $ FM \perp EN$.

2003 AMC 10, 4

Rose fills each of the rectangular regions of her rectangular flower bed with a different type of flower. The lengths, in feet, of the rectangular regions in her flower bed are as shown in the figure. She plants one flower per square foot in each region. Asters cost $ \$$1 each, begonias $ \$$1.50 each, cannas $ \$$2 each, dahlias $ \$$2.50 each, and Easter lilies $ \$$3 each. What is the least possible cost, in dollars, for her garden? [asy]unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((6,0)--(0,0)--(0,1)--(6,1)); draw((0,1)--(0,6)--(4,6)--(4,1)); draw((4,6)--(11,6)--(11,3)--(4,3)); draw((11,3)--(11,0)--(6,0)--(6,3)); label("1",(0,0.5),W); label("5",(0,3.5),W); label("3",(11,1.5),E); label("3",(11,4.5),E); label("4",(2,6),N); label("7",(7.5,6),N); label("6",(3,0),S); label("5",(8.5,0),S);[/asy]$ \textbf{(A)}\ 108 \qquad \textbf{(B)}\ 115 \qquad \textbf{(C)}\ 132 \qquad \textbf{(D)}\ 144 \qquad \textbf{(E)}\ 156$

1987 China Team Selection Test, 1

Given a convex figure in the Cartesian plane that is symmetric with respect of both axis, we construct a rectangle $A$ inside it with maximum area (over all posible rectangles). Then we enlarge it with center in the center of the rectangle and ratio lamda such that is covers the convex figure. Find the smallest lamda such that it works for all convex figures.

2024 New Zealand MO, 3

A rectangular sheet of paper is folded so that one corner lies on top of the corner diagonally opposite. The resulting shape is a pentagon whose area is $20\%$ one-sheet thick, and $80\%$ two-sheets-thick. Determine the ratio of the two sides of the original sheet of paper.

2024 Sharygin Geometry Olympiad, 8.5

The vertices $M$, $N$, $K$ of rectangle $KLMN$ lie on the sides $AB$, $BC$, $CA$ respectively of a regular triangle $ABC$ in such a way that $AM = 2$, $KC = 1$. The vertex $L$ lies outside the triangle. Find the value of $\angle KMN$.

1997 Putnam, 1

A rectangle, $HOMF$, has sides $HO=11$ and $OM=5$. A triangle $\Delta ABC$ has $H$ as orthocentre, $O$ as circumcentre, $M$ be the midpoint of $BC$, $F$ is the feet of altitude from $A$. What is the length of $BC$ ? [asy] unitsize(0.3 cm); pair F, H, M, O; F = (0,0); H = (0,5); O = (11,5); M = (11,0); draw(H--O--M--F--cycle); label("$F$", F, SW); label("$H$", H, NW); label("$M$", M, SE); label("$O$", O, NE); [/asy]

V Soros Olympiad 1998 - 99 (Russia), 9.7

Cut the $10$ cm $\times 20$ cm rectangle into two pieces with one straight cut so that they can fit inside the $19.5$ cm diameter circle without intersecting.

2012 Math Prize For Girls Problems, 9

Bianca has a rectangle whose length and width are distinct primes less than 100. Let $P$ be the perimeter of her rectangle, and let $A$ be the area of her rectangle. What is the least possible value of $\frac{P^2}{A}$?

2015 India PRMO, 10

$10.$ A $2\times 3$ rectangle and a $3 \times 4$ rectangle are contained within a square without overlapping at any interior point, and the sides of the square are parallel to the sides of the two given rectangles. What is the smallest possible area of the square $?$

2024 JHMT HS, 15

Let $N_{14}$ be the answer to problem 14. Rectangle $ABCD$ has area $\sqrt{2N_{14}}$. Points $E$, $F$, $G$, and $H$ lie on the rays $\overrightarrow{AB}$, $\overrightarrow{BC}$, $\overrightarrow{CD}$, and $\overrightarrow{DA}$, respectively, such that $EFGH$ is a rectangle with area $2\sqrt{2N_{14}}$ that contains all of $ABCD$ in its interior. If \[ \tan\angle AEH = \tan\angle BFE = \tan\angle CGF = \tan\angle DHG = \sqrt{\frac{1}{48}}, \] then $EG=\tfrac{m\sqrt{n}}{p}$, where $m$, $n$, and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime. Compute $m + n + p$.

2003 Balkan MO, 4

A rectangle $ABCD$ has side lengths $AB = m$, $AD = n$, with $m$ and $n$ relatively prime and both odd. It is divided into unit squares and the diagonal AC intersects the sides of the unit squares at the points $A_1 = A, A_2, A_3, \ldots , A_k = C$. Show that \[ A_1A_2 - A_2A_3 + A_3A_4 - \cdots + A_{k-1}A_k = {\sqrt{m^2+n^2}\over mn}. \]

2003 AIME Problems, 5

Consider the set of points that are inside or within one unit of a rectangular parallelepiped (box) that measures 3 by 4 by 5 units. Given that the volume of this set is $(m + n \pi)/p$, where $m$, $n$, and $p$ are positive integers, and $n$ and $p$ are relatively prime, find $m + n + p$.

2015 AMC 10, 11

The ratio of the length to the width of a rectangle is $4:3$. If the rectangle has diagonal of length $d$, then the area may be expressed as $kd^2$ for some constant $k$. What is $k$? $\textbf{(A) }\dfrac27\qquad\textbf{(B) }\dfrac37\qquad\textbf{(C) }\dfrac{12}{25}\qquad\textbf{(D) }\dfrac{16}{25}\qquad\textbf{(E) }\dfrac34$

2005 Baltic Way, 9

A rectangle is divided into $200\times 3$ unit squares. Prove that the number of ways of splitting this rectangle into rectangles of size $1\times 2$ is divisible by $3$.

2024 ELMO Shortlist, G7

Let $ABC$ be a triangle. Construct rectangles $BA_1A_2C$, $CB_1B_2A$, and $AC_1C_2B$ outside $ABC$ such that $\angle BCA_1=\angle CAB_1=\angle ABC_1$. Let $A_1B_2$ and $A_2C_1$ intersect at $A'$ and define $B',C'$ similarly. Prove that line $AA'$ bisects $B'C'$. [i]Linus Tang[/i]

2011 All-Russian Olympiad Regional Round, 9.8

Straight rod of 2 meter length is cut into $N$ sticks. The length of each piece is an integer number of centimeters. For which smallest $N$ can one guarantee that it is possible to form the contour of some rectangle, while using all sticks and not breaking them further? (Author: A. Magazinov)

1985 IMO Longlists, 2

We are given a triangle $ABC$ and three rectangles $R_1,R_2,R_3$ with sides parallel to two fixed perpendicular directions and such that their union covers the sides $AB,BC$, and $CA$; i.e., each point on the perimeter of $ABC$ is contained in or on at least one of the rectangles. Prove that all points inside the triangle are also covered by the union of $R_1,R_2,R_3.$

2013 Argentina National Olympiad Level 2, 6

Is there a square with side lenght $\ell < 1$ that can completely cover any rectangle of diagonal $1$?

2014 Contests, 3

The diagram below shows a rectangle with side lengths $36$ and $48$. Each of the sides is trisected and edges are added between the trisection points as shown. Then the shaded corner regions are removed, leaving the octagon which is not shaded in the diagram. Find the perimeter of this octagon. [asy] size(4cm); dotfactor=3.5; pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,12); B=(0,24); C=(16,36); D=(32,36); E=(48,24); F=(48,12); G=(32,0); H=(16,0); W=origin; X=(0,36); Y=(48,36); Z=(48,0); filldraw(W--A--H--cycle^^B--X--C--cycle^^D--Y--E--cycle^^F--Z--G--cycle,rgb(.76,.76,.76)); draw(W--X--Y--Z--cycle,linewidth(1.2)); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); [/asy]

2018 Hanoi Open Mathematics Competitions, 2

Let $ABCD$ be a rectangle with $\angle ABD = 15^o, BD = 6$ cm. Compute the area of the rectangle. A. $9$ cm$^2$ B. $9 \sqrt3$ cm$^2$ C. $18$ cm$^2$ D. $18 \sqrt3$ cm$^2$ E. $24 \sqrt3$ cm$^2$

2000 Chile National Olympiad, 6

With $76$ tiles, of which some are white, other blue and the remaining red, they form a rectangle of $4 \times 19$. Show that there is a rectangle, inside the largest, that has its vertices of the same color.

1999 German National Olympiad, 3

A mathematician investigates methods of finding area of a convex quadrilateral obtains the following formula for the area $A$ of a quadrilateral with consecutive sides $a,b,c,d$: $A =\frac{a+c}{2}\frac{b+d}{2}$ (1) and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$ (2) where $p = (a+b+c+d)/2$. However, these formulas are not valid for all convex quadrilaterals. Prove that (1) holds if and only if the quadrilateral is a rectangle, while (2) holds if and only if the quadrilateral is cyclic.

1988 Poland - Second Round, 5

Decide whether any rectangle that can be covered by 25 circles of radius 2 can also be covered by 100 circles of radius 1.