Found problems: 1001
1995 Poland - First Round, 8
The ray of light starts from the center of a square and reflects from its sides with the principle that the angle of reflection is equal to the angle of incidence. After some time the ray returns to the center of the square. The ray never reached the vertex and has never returned to the center of the square before. Prove that the ray reflected from the sides of the square an odd number of times.
2010 Iran MO (3rd Round), 4
in a triangle $ABC$, $I$ is the incenter. $BI$ and $CI$ cut the circumcircle of $ABC$ at $E$ and $F$ respectively. $M$ is the midpoint of $EF$. $C$ is a circle with diameter $EF$. $IM$ cuts $C$ at two points $L$ and $K$ and the arc $BC$ of circumcircle of $ABC$ (not containing $A$) at $D$. prove that $\frac{DL}{IL}=\frac{DK}{IK}$.(25 points)
2014 Online Math Open Problems, 19
In triangle $ABC$, $AB=3$, $AC=5$, and $BC=7$. Let $E$ be the reflection of $A$ over $\overline{BC}$, and let line $BE$ meet the circumcircle of $ABC$ again at $D$. Let $I$ be the incenter of $\triangle ABD$. Given that $\cos ^2 \angle AEI = \frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers, determine $m+n$.
[i]Proposed by Ray Li[/i]
1998 All-Russian Olympiad, 8
Each square of a $(2^n-1) \times (2^n-1)$ board contains either $1$ or $-1$. Such an arrangement is called [i]successful[/i] if each number is the product of its neighbors. Find the number of successful arrangements.
2009 China Team Selection Test, 1
Given that circle $ \omega$ is tangent internally to circle $ \Gamma$ at $ S.$ $ \omega$ touches the chord $ AB$ of $ \Gamma$ at $ T$. Let $ O$ be the center of $ \omega.$ Point $ P$ lies on the line $ AO.$ Show that $ PB\perp AB$ if and only if $ PS\perp TS.$
2007 Baltic Way, 7
A [i]squiggle[/i] is composed of six equilateral triangles with side length $1$ as shown in the figure below. Determine all possible integers $n$ such that an equilateral triangle with side length $n$ can be fully covered with [i]squiggle[/i]s (rotations and reflections of [i]squiggle[/i]s are allowed, overlappings are not).
[asy]
import graph; size(100); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black;
draw((0,0)--(0.5,1),linewidth(2pt)); draw((0.5,1)--(1,0),linewidth(2pt)); draw((0,0)--(3,0),linewidth(2pt)); draw((1.5,1)--(2,0),linewidth(2pt)); draw((2,0)--(2.5,1),linewidth(2pt)); draw((0.5,1)--(2.5,1),linewidth(2pt)); draw((1,0)--(2,2),linewidth(2pt)); draw((2,2)--(3,0),linewidth(2pt));
dot((0,0),ds); dot((1,0),ds); dot((0.5,1),ds); dot((2,0),ds); dot((1.5,1),ds); dot((3,0),ds); dot((2.5,1),ds); dot((2,2),ds); clip((-4.28,-10.96)--(-4.28,6.28)--(16.2,6.28)--(16.2,-10.96)--cycle);[/asy]
Croatia MO (HMO) - geometry, 2018.3
Let $k$ be a circle centered at $O$. Let $\overline{AB}$ be a chord of that circle and $M$ its midpoint. Tangent on $k$ at points $A$ and $B$ intersect at $T$. The line $\ell$ goes through $T$, intersect the shorter arc $AB$ at the point $C$ and the longer arc $AB$ at the point $D$, so that $|BC| = |BM|$. Prove that the circumcenter of the triangle $ADM$ is the reflection of $O$ across the line $AD$
2001 India National Olympiad, 1
Let $ABC$ be a triangle in which no angle is $90^{\circ}$. For any point $P$ in the plane of the triangle, let $A_1, B_1, C_1$ denote the reflections of $P$ in the sides $BC,CA,AB$ respectively. Prove that
(i) If $P$ is the incenter or an excentre of $ABC$, then $P$ is the circumenter of $A_1B_1C_1$;
(ii) If $P$ is the circumcentre of $ABC$, then $P$ is the orthocentre of $A_1B_1C_1$;
(iii) If $P$ is the orthocentre of $ABC$, then $P$ is either the incentre or an excentre of $A_1B_1C_1$.
2019 Dutch Mathematical Olympiad, 3
Points $A, B$, and $C$ lie on a circle with centre $M$. The reflection of point $M$ in the line $AB$ lies inside triangle $ABC$ and is the intersection of the angle bisectors of angles $A$ and $B$. Line $AM$ intersects the circle again in point $D$.
Show that $|CA| \cdot |CD| = |AB| \cdot |AM|$.
2024 Turkey EGMO TST, 6
Let $\omega_1$ and $\omega_2$ be two different circles that intersect at two different points, $X$ and $Y$. Let lines $l_1$ and $l_2$ be common tangent lines of these circles such that $l_1$ is tangent $\omega_1$ at $A$ and $\omega_2$ at $C$ and $l_2$ is tangent $\omega_1$ at $B$ and $\omega_2$ at $D$. Let $Z$ be the reflection of $Y$ respect to $l_1$ and let $BC$ and $\omega_1$ meet at $K$ for the second time. Let $AD$ and $\omega_2$ meet at $L$ for the second time. Prove that the line tangent to $\omega_1$ and passes through $K$ and the line tangent to $\omega_2$ and passes through $L$ meet on the line $XZ$.
2021 Iran MO (3rd Round), 2
Given an acute triangle $ABC$, let $AD$ be an altitude and $H$ the orthocenter. Let $E$ denote the reflection of $H$ with respect to $A$. Point $X$ is chosen on the circumcircle of triangle $BDE$ such that $AC\| DX$ and point $Y$ is chosen on the circumcircle of triangle $CDE$ such that $DY\| AB$. Prove that the circumcircle of triangle $AXY$ is tangent to that of $ABC$.
2008 Federal Competition For Advanced Students, Part 2, 3
We are given a square $ ABCD$. Let $ P$ be a point not equal to a corner of the square or to its center $ M$. For any such $ P$, we let $ E$ denote the common point of the lines $ PD$ and $ AC$, if such a point exists. Furthermore, we let $ F$ denote the common point of the lines $ PC$ and $ BD$, if such a point exists. All such points $ P$, for which $ E$ and $ F$ exist are called acceptable points. Determine the set of all acceptable points, for which the line $ EF$ is parallel to $ AD$.
2010 IMO Shortlist, 5
Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$
[i]Proposed by Nazar Serdyuk, Ukraine[/i]
2003 ITAMO, 3
Let a semicircle is given with diameter $AB$ and centre $O$ and let $C$ be a arbitrary point on the segment $OB$. Point $D$ on the semicircle is such that $CD$ is perpendicular to $AB$. A circle with centre $P$ is tangent to the arc $BD$ at $F$ and to the segment $CD$ and $AB$ at $E$ and $G$ respectively. Prove that the triangle $ADG$ is isosceles.
1996 IMO Shortlist, 1
Let $ ABC$ be a triangle, and $ H$ its orthocenter. Let $ P$ be a point on the circumcircle of triangle $ ABC$ (distinct from the vertices $ A$, $ B$, $ C$), and let $ E$ be the foot of the altitude of triangle $ ABC$ from the vertex $ B$. Let the parallel to the line $ BP$ through the point $ A$ meet the parallel to the line $ AP$ through the point $ B$ at a point $ Q$. Let the parallel to the line $ CP$ through the point $ A$ meet the parallel to the line $ AP$ through the point $ C$ at a point $ R$. The lines $ HR$ and $ AQ$ intersect at some point $ X$. Prove that the lines $ EX$ and $ AP$ are parallel.
2002 Balkan MO, 3
Two circles with different radii intersect in two points $A$ and $B$. Let the common tangents of the two circles be $MN$ and $ST$ such that $M,S$ lie on the first circle, and $N,T$ on the second. Prove that the orthocenters of the triangles $AMN$, $AST$, $BMN$ and $BST$ are the four vertices of a rectangle.
2005 Georgia Team Selection Test, 2
In triangle $ ABC$ we have $ \angle{ACB} \equal{} 2\angle{ABC}$ and there exists the point $ D$ inside the triangle such that $ AD \equal{} AC$ and $ DB \equal{} DC$. Prove that $ \angle{BAC} \equal{} 3\angle{BAD}$.
1988 Federal Competition For Advanced Students, P2, 5
The bisectors of angles $ B$ and $ C$ of triangle $ ABC$ intersect the opposite sides in points $ B'$ and $ C'$ respectively. Show that the line $ B'C'$ intersects the incircle of the triangle.
2014 Indonesia MO Shortlist, G1
The inscribed circle of the $ABC$ triangle has center $I$ and touches to $BC$ at $X$. Suppose the $AI$ and $BC$ lines intersect at $L$, and $D$ is the reflection of $L$ wrt $X$. Points $E$ and $F$ respectively are the result of a reflection of $D$ wrt to lines $CI$ and $BI$ respectively. Show that quadrilateral $BCEF$ is cyclic .
2010 Germany Team Selection Test, 2
Let $ABC$ be a triangle with incenter $I$ and let $X$, $Y$ and $Z$ be the incenters of the triangles $BIC$, $CIA$ and $AIB$, respectively. Let the triangle $XYZ$ be equilateral. Prove that $ABC$ is equilateral too.
[i]Proposed by Mirsaleh Bahavarnia, Iran[/i]
2019 Irish Math Olympiad, 5
Let $M$ be a point on the side $BC$ of triangle $ABC$ and let $P$ and $Q$ denote the circumcentres of triangles $ABM$ and $ACM$ respectively. Let $L$ denote the point of intersection of the extended lines $BP$ and $CQ$ and let $K$ denote the reflection of $L$ through the line $PQ$. Prove that $M, P, Q$ and $K$ all lie on the same circle.
2017 Estonia Team Selection Test, 3
Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.
2012 India IMO Training Camp, 1
Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$.
[i]Proposed by Jan Vonk, Belgium and Hojoo Lee, South Korea[/i]
1999 IMO, 1
A set $ S$ of points from the space will be called [b]completely symmetric[/b] if it has at least three elements and fulfills the condition that for every two distinct points $ A$ and $ B$ from $ S$, the perpendicular bisector plane of the segment $ AB$ is a plane of symmetry for $ S$. Prove that if a completely symmetric set is finite, then it consists of the vertices of either a regular polygon, or a regular tetrahedron or a regular octahedron.
2017 Sharygin Geometry Olympiad, 3
Let $AD, BE$ and $CF$ be the medians of triangle $ABC$. The points $X$ and $Y$ are the reflections of $F$ about $AD$ and $BE$, respectively. Prove that the circumcircles of triangles $BEX$ and $ADY$ are concentric.