This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2004 Bulgaria Team Selection Test, 2

Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.

2012 AIME Problems, 15

Triangle $ABC$ is inscribed in circle $\omega$ with $AB = 5$, $BC = 7$, and $AC = 3$. The bisector of angle $A$ meets side $BC$ at $D$ and circle $\omega$ at a second point $E$. Let $\gamma$ be the circle with diameter $DE$. Circles $\omega$ and $\gamma$ meet at $E$ and a second point $F$. Then $AF^2 = \frac mn$, where m and n are relatively prime positive integers. Find $m + n$.

2010 Iran Team Selection Test, 11

Let $O, H$ be circumcenter and orthogonal center of triangle $ABC$. $M,N$ are midpoints of $BH$ and $CH$. $BB'$ is diagonal of circumcircle. If $HONM$ is a cyclic quadrilateral, prove that $B'N=\frac12AC$.

1997 All-Russian Olympiad Regional Round, 11.2

All vertices of triangle $ABC$ lie inside square $K$. Prove that if all of them are reflected symmetrically with respect to the point of intersection of the medians of triangle $ABC$, then at least one of the resulting three points will be inside $K$.

2016 Saudi Arabia BMO TST, 2

Let $I$ be the incenter of an acute triangle $ABC$. Assume that $K_1$ is the point such that $AK_1 \perp BC$ and the circle with center $K_1$ of radius $K_1A$ is internally tangent to the incircle of triangle $ABC$ at $A_1$. The points $B_1, C_1$ are defined similarly. a) Prove that $AA_1, BB_1, CC_1$ are concurrent at a point $P$. b) Let $\omega_1,\omega_2,\omega_3$ be the excircles of triangle $ABC$ with respect to $A, B, C$, respectively. The circles $\gamma_1,\gamma_2\gamma_3$ are the reflections of $\omega_1,\omega_2,\omega_3$ with respect to the midpoints of $BC, CA, AB$, respectively. Prove that P is the radical center of $\gamma_1,\gamma_2,\gamma_3$.

1999 Turkey Team Selection Test, 2

Let $L$ and $N$ be the mid-points of the diagonals $[AC]$ and $[BD]$ of the cyclic quadrilateral $ABCD$, respectively. If $BD$ is the bisector of the angle $ANC$, then prove that $AC$ is the bisector of the angle $BLD$.

2014 ELMO Shortlist, 4

Let $ABCD$ be a quadrilateral inscribed in circle $\omega$. Define $E = AA \cap CD$, $F = AA \cap BC$, $G = BE \cap \omega$, $H = BE \cap AD$, $I = DF \cap \omega$, and $J = DF \cap AB$. Prove that $GI$, $HJ$, and the $B$-symmedian are concurrent. [i]Proposed by Robin Park[/i]

2014 Contests, 2

The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear. [i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]

2007 Vietnam Team Selection Test, 2

Let $ABC$ be an acute triangle with incricle $(I)$. $(K_{A})$ is the cricle such that $A\in (K_{A})$ and $AK_{A}\perp BC$ and it in-tangent for $(I)$ at $A_{1}$, similary we have $B_{1},C_{1}$. a) Prove that $AA_{1},BB_{1},CC_{1}$ are concurrent, called point-concurrent is $P$. b) Assume circles $(J_{A}),(J_{B}),(J_{C})$ are symmetry for excircles $(I_{A}),(I_{B}),(I_{C})$ across midpoints of $BC,CA,AB$ ,resp. Prove that $P_{P/(J_{A})}=P_{P/(J_{B})}=P_{P/(J_{C})}$. Note. If $(O;R)$ is a circle and $M$ is a point then $P_{M/(O)}=OM^{2}-R^{2}$.

1967 AMC 12/AHSME, 40

Located inside equilateral triangle $ABC$ is a point $P$ such that $PA=8$, $PB=6$, and $PC=10$. To the nearest integer the area of triangle $ABC$ is: $\textbf{(A)}\ 159\qquad \textbf{(B)}\ 131\qquad \textbf{(C)}\ 95\qquad \textbf{(D)}\ 79\qquad \textbf{(E)}\ 50$

2010 Balkan MO Shortlist, G5

Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$. Prove that $M_1$ lies on the segment $BH_1$.

2013 India IMO Training Camp, 2

In a triangle $ABC$ with $B = 90^\circ$, $D$ is a point on the segment $BC$ such that the inradii of triangles $ABD$ and $ADC$ are equal. If $\widehat{ADB} = \varphi$ then prove that $\tan^2 (\varphi/2) = \tan (C/2)$.

2000 AMC 12/AHSME, 10

The point $ P \equal{} (1,2,3)$ is reflected in the $ xy$-plane, then its image $ Q$ is rotated by $ 180^\circ$ about the $ x$-axis to produce $ R$, and finally, $ R$ is translated by 5 units in the positive-$ y$ direction to produce $ S$. What are the coordinates of $ S$? $ \textbf{(A)}\ (1,7, \minus{} 3) \qquad \textbf{(B)}\ ( \minus{} 1,7, \minus{} 3) \qquad \textbf{(C)}\ ( \minus{} 1, \minus{} 2,8) \qquad \textbf{(D)}\ ( \minus{} 1,3,3) \qquad \textbf{(E)}\ (1,3,3)$

2008 Iran MO (3rd Round), 1

Let $ ABC$ be a triangle with $ BC > AC > AB$. Let $ A',B',C'$ be feet of perpendiculars from $ A,B,C$ to $ BC,AC,AB$, such that $ AA' \equal{} BB' \equal{} CC' \equal{} x$. Prove that: a) If $ ABC\sim A'B'C'$ then $ x \equal{} 2r$ b) Prove that if $ A',B'$ and $ C'$ are collinear, then $ x \equal{} R \plus{} d$ or $ x \equal{} R \minus{} d$. (In this problem $ R$ is the radius of circumcircle, $ r$ is radius of incircle and $ d \equal{} OI$)

2004 Harvard-MIT Mathematics Tournament, 2

How many ways can you mark 8 squares of an $8\times8$ chessboard so that no two marked squares are in the same row or column, and none of the four corner squares is marked? (Rotations and reflections are considered different.)

2003 Iran MO (3rd Round), 13

here is the most difficult and the most beautiful problem occurs in 21th iranian (2003) olympiad assume that P is n-gon ,lying on the plane ,we name its edge 1,2,..,n. if S=s1,s2,s3,.... be a finite or infinite sequence such that for each i, si is in {1,2,...,n}, we move P on the plane according to the S in this form: at first we reflect P through the s1 ( s1 means the edge which iys number is s1)then through s2 and so on like the figure below. a)show that there exist the infinite sequence S sucth that if we move P according to S we cover all the plane b)prove that the sequence in a) isn't periodic. c)assume that P is regular pentagon ,which the radius of its circumcircle is 1,and D is circle ,with radius 1.00001 ,arbitrarily in the plane .does exist a sequence S such that we move P according to S then P reside in D completely?

2012 NIMO Problems, 6

In $\triangle ABC$ with circumcenter $O$, $\measuredangle A = 45^\circ$. Denote by $X$ the second intersection of $\overrightarrow{AO}$ with the circumcircle of $\triangle BOC$. Compute the area of quadrilateral $ABXC$ if $BX = 8$ and $CX = 15$. [i]Proposed by Aaron Lin[/i]

2009 USAMTS Problems, 4

Let $ABCDEF$ be a convex hexagon, such that $FA = AB$, $BC = CD$, $DE = EF$, and $\angle FAB = 2\angle EAC$. Suppose that the area of $ABC$ is $25$, the area of $CDE$ is $10$, the area of $EF A$ is $25$, and the area of $ACE$ is $x$. Find, with proof, all possible values of $x$.

2012 Online Math Open Problems, 18

The sum of the squares of three positive numbers is $160$. One of the numbers is equal to the sum of the other two. The difference between the smaller two numbers is $4.$ What is the difference between the cubes of the smaller two numbers? [i]Author: Ray Li[/i] [hide="Clarification"]The problem should ask for the positive difference.[/hide]

2017 Sharygin Geometry Olympiad, 5

Let $BH_b, CH_c$ be altitudes of an acute-angled triangle $ABC$. The line $H_bH_c$ meets the circumcircle of $ABC$ at points $X$ and $Y$. Points $P,Q$ are the reflections of $X,Y$ about $AB,AC$ respectively. Prove that $PQ \parallel BC$. [i]Proposed by Pavel Kozhevnikov[/i]

Mathley 2014-15, 4

Let $ABC$ be an acute triangle with $E, F$ being the reflections of $B,C$ about the line $AC, AB$ respectively. Point $D$ is the intersection of $BF$ and $CE$. If $K$ is the circumcircle of triangle $DEF$, prove that $AK$ is perpendicular to $BC$. Nguyen Minh Ha, College of Pedagogical University of Hanoi

1985 AIME Problems, 11

An ellipse has foci at $(9,20)$ and $(49,55)$ in the $xy$-plane and is tangent to the $x$-axis. What is the length of its major axis?

2023 Switzerland - Final Round, 1

Let $ABC$ be an acute triangle with incenter $I$. On its circumcircle, let $M_A$, $M_B$ and $M_C$ be the midpoints of minor arcs $BC, CA$ and $AB$, respectively. Prove that the reflection $M_A$ over the line $IM_B$ lies on the circumcircle of the triangle $IM_BM_C$.

2014 China Team Selection Test, 4

Given circle $O$ with radius $R$, the inscribed triangle $ABC$ is an acute scalene triangle, where $AB$ is the largest side. $AH_A, BH_B,CH_C$ are heights on $BC,CA,AB$. Let $D$ be the symmetric point of $H_A$ with respect to $H_BH_C$, $E$ be the symmetric point of $H_B$ with respect to $H_AH_C$. $P$ is the intersection of $AD,BE$, $H$ is the orthocentre of $\triangle ABC$. Prove: $OP\cdot OH$ is fixed, and find this value in terms of $R$. (Edited)

2007 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be a right triangle with $A = 90^{\circ}$ and $D \in (AC)$. Denote by $E$ the reflection of $A$ in the line $BD$ and $F$ the intersection point of $CE$ with the perpendicular in $D$ to $BC$. Prove that $AF, DE$ and $BC$ are concurrent.