Found problems: 1001
2013 Harvard-MIT Mathematics Tournament, 6
Let triangle $ABC$ satisfy $2BC = AB+AC$ and have incenter $I$ and circumcircle $\omega$. Let $D$ be the intersection of $AI$ and $\omega$ (with $A, D$ distinct). Prove that $I$ is the midpoint of $AD$.
2011 Lusophon Mathematical Olympiad, 2
Consider two circles, tangent at $T$, both inscribed in a rectangle of height $2$ and width $4$. A point $E$ moves counterclockwise around the circle on the left, and a point $D$ moves clockwise around the circle on the right. $E$ and $D$ start moving at the same time; $E$ starts at $T$, and $D$ starts at $A$, where $A$ is the point where the circle on the right intersects the top side of the rectangle. Both points move with the same speed. Find the locus of the midpoints of the segments joining $E$ and $D$.
2015 AMC 10, 10
How many rearrangements of $abcd$ are there in which no two adjacent letters are also adjacent letters in the alphabet? For example, no such rearrangements could include either $ab$ or $ba$.
$ \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4 $
2001 Czech-Polish-Slovak Match, 2
A triangle $ABC$ has acute angles at $A$ and $B$. Isosceles triangles $ACD$ and $BCE$ with bases $AC$ and $BC$ are constructed externally to triangle $ABC$ such that $\angle ADC = \angle ABC$ and $\angle BEC = \angle BAC$. Let $S$ be the circumcenter of $\triangle ABC$. Prove that the length of the polygonal line $DSE$ equals the perimeter of triangle $ABC$ if and only if $\angle ACB$ is right.
2022 Bosnia and Herzegovina IMO TST, 1
Let $ABC$ be a triangle such that $AB=AC$ and $\angle BAC$ is obtuse. Point $O$ is the circumcenter of triangle $ABC$, and $M$ is the reflection of $A$ in $BC$. Let $D$ be an arbitrary point on line $BC$, such that $B$ is in between $D$ and $C$. Line $DM$ cuts the circumcircle of $ABC$ in $E,F$. Circumcircles of triangles $ADE$ and $ADF$ cut $BC$ in $P,Q$ respectively. Prove that $DA$ is tangent to the circumcircle of triangle $OPQ$.
2011 Romanian Master of Mathematics, 5
For every $n\geq 3$, determine all the configurations of $n$ distinct points $X_1,X_2,\ldots,X_n$ in the plane, with the property that for any pair of distinct points $X_i$, $X_j$ there exists a permutation $\sigma$ of the integers $\{1,\ldots,n\}$, such that $\textrm{d}(X_i,X_k) = \textrm{d}(X_j,X_{\sigma(k)})$ for all $1\leq k \leq n$.
(We write $\textrm{d}(X,Y)$ to denote the distance between points $X$ and $Y$.)
[i](United Kingdom) Luke Betts[/i]
2005 CentroAmerican, 4
Two players, Red and Blue, play in alternating turns on a 10x10 board. Blue goes first. In his turn, a player picks a row or column (not chosen by any player yet) and color all its squares with his own color. If any of these squares was already colored, the new color substitutes the old one.
The game ends after 20 turns, when all rows and column were chosen. Red wins if the number of red squares in the board exceeds at least by 10 the number of blue squares; otherwise Blue wins.
Determine which player has a winning strategy and describe this strategy.
2012 Sharygin Geometry Olympiad, 2
Three parallel lines passing through the vertices $A, B$, and $C$ of triangle $ABC$ meet its circumcircle again at points $A_1, B_1$, and $C_1$ respectively. Points $A_2, B_2$, and $C_2$ are the reflections of points $A_1, B_1$, and $C_1$ in $BC, CA$, and $AB$ respectively. Prove that the lines $AA_2, BB_2, CC_2$ are concurrent.
(D.Shvetsov, A.Zaslavsky)
2020 AMC 10, 23
Square $ABCD$ in the coordinate plane has vertices at the points $A(1,1), B(-1,1), C(-1,-1),$ and $D(1,-1).$ Consider the following four transformations:
[list=]
[*]$L,$ a rotation of $90^{\circ}$ counterclockwise around the origin;
[*]$R,$ a rotation of $90^{\circ}$ clockwise around the origin;
[*]$H,$ a reflection across the $x$-axis; and
[*]$V,$ a reflection across the $y$-axis.
[/list]
Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying $R$ and then $V$ would send the vertex $A$ at $(1,1)$ to $(-1,-1)$ and would send the vertex $B$ at $(-1,1)$ to itself. How many sequences of $20$ transformations chosen from $\{L, R, H, V\}$ will send all of the labeled vertices back to their original positions? (For example, $R, R, V, H$ is one sequence of $4$ transformations that will send the vertices back to their original positions.)
$\textbf{(A)}\ 2^{37} \qquad\textbf{(B)}\ 3\cdot 2^{36} \qquad\textbf{(C)}\ 2^{38} \qquad\textbf{(D)}\ 3\cdot 2^{37} \qquad\textbf{(E)}\ 2^{39}$
2003 USA Team Selection Test, 6
Let $\overline{AH_1}, \overline{BH_2}$, and $\overline{CH_3}$ be the altitudes of an acute scalene triangle $ABC$. The incircle of triangle $ABC$ is tangent to $\overline{BC}, \overline{CA},$ and $\overline{AB}$ at $T_1, T_2,$ and $T_3$, respectively. For $k = 1, 2, 3$, let $P_i$ be the point on line $H_iH_{i+1}$ (where $H_4 = H_1$) such that $H_iT_iP_i$ is an acute isosceles triangle with $H_iT_i = H_iP_i$. Prove that the circumcircles of triangles $T_1P_1T_2$, $T_2P_2T_3$, $T_3P_3T_1$ pass through a common point.
2004 Purple Comet Problems, 11
How far is it from the point $(9, 17)$ to its reflection across the line \[3x + 4y = 15?\]
2013 India IMO Training Camp, 2
In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.
2007 ISI B.Math Entrance Exam, 10
The eleven members of a cricket team are numbered $1,2,...,11$. In how many ways can the entire cricket team sit on the eleven chairs arranged around a circular table so that the numbers of any two adjacent players differ by one or two ?
2018 Taiwan TST Round 1, 2
Given a scalene triangle $ \triangle ABC $. $ B', C' $ are points lie on the rays $ \overrightarrow{AB}, \overrightarrow{AC} $ such that $ \overline{AB'} = \overline{AC}, \overline{AC'} = \overline{AB} $. Now, for an arbitrary point $ P $ in the plane. Let $ Q $ be the reflection point of $ P $ w.r.t $ \overline{BC} $. The intersections of $ \odot{\left(BB'P\right)} $ and $ \odot{\left(CC'P\right)} $ is $ P' $ and the intersections of $ \odot{\left(BB'Q\right)} $ and $ \odot{\left(CC'Q\right)} $ is $ Q' $. Suppose that $ O, O' $ are circumcenters of $ \triangle{ABC}, \triangle{AB'C'} $ Show that
1. $ O', P', Q' $ are colinear
2. $ \overline{O'P'} \cdot \overline{O'Q'} = \overline{OA}^{2} $
1998 Putnam, 2
Given a point $(a,b)$ with $0<b<a$, determine the minimum perimeter of a triangle with one vertex at $(a,b)$, one on the $x$-axis, and one on the line $y=x$. You may assume that a triangle of minimum perimeter exists.
2005 USA Team Selection Test, 6
Let $ABC$ be an acute scalene triangle with $O$ as its circumcenter. Point $P$ lies inside triangle $ABC$ with $\angle PAB = \angle PBC$ and $\angle PAC = \angle PCB$. Point $Q$ lies on line $BC$ with $QA = QP$. Prove that $\angle AQP = 2\angle OQB$.
2005 France Pre-TST, 1
Let $I$ be the incenter of the triangle $ABC$, et let $A',B',C'$ be the symmetric of $I$ with respect to the lines $BC,CA,AB$ respectively. It is known that $B$ belongs to the circumcircle of $A'B'C'$.
Find $\widehat {ABC}$.
Pierre.
2000 India National Olympiad, 1
The incircle of $ABC$ touches $BC$, $CA$, $AB$ at $K$, $L$, $M$ respectively. The line through $A$ parallel to $LK$ meets $MK$ at $P$, and the line through $A$ parallel to $MK$ meets $LK$ at $Q$. Show that the line $PQ$ bisects $AB$ and bisects $AC$.
1997 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 10
The minimal value of $ f(x) \equal{} \sqrt{a^2 \plus{} x^2} \plus{} \sqrt{(x\minus{}b)^2 \plus{} c^2}$ is
A. $ a\plus{}b\plus{}c$
B. $ \sqrt{a^2 \plus{} (b \plus{} c)^2}$
C. $ \sqrt{b^2 \plus{} (a\plus{}c)^2}$
D. $ \sqrt{(a\plus{}b)^2 \plus{} c^2}$
E. None of these
2007 Germany Team Selection Test, 3
Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.
Ukrainian TYM Qualifying - geometry, I.13
A candle and a man are placed in a dihedral mirror angle. How many reflections can the man see ?
2002 India National Olympiad, 1
For a convex hexagon $ ABCDEF$ in which each pair of opposite sides is unequal, consider the following statements.
($ a_1$) $ AB$ is parallel to $ DE$. ($ a_2$)$ AE \equal{} BD$.
($ b_1$) $ BC$ is parallel to $ EF$. ($ b_2$)$ BF \equal{} CE$.
($ c_1$) $ CD$ is parallel to $ FA$. ($ c_2$) $ CA \equal{} DF$.
$ (a)$ Show that if all six of these statements are true then the hexagon is cyclic.
$ (b)$ Prove that, in fact, five of the six statements suffice.
2011 Singapore MO Open, 1
In the acute-angled non-isosceles triangle $ABC$, $O$ is its circumcenter, $H$ is its orthocenter and $AB>AC$. Let $Q$ be a point on $AC$ such that the extension of $HQ$ meets the extension of $BC$ at the point $P$. Suppose $BD=DP$, where $D$ is the foot of the perpendicular from $A$ onto $BC$. Prove that $\angle ODQ=90^{\circ}$.
Kvant 2019, M2564
Let $ABC$ be an acute-angled triangle with $AC<BC.$ A circle passes through $A$ and $B$ and crosses the segments $AC$ and $BC$ again at $A_1$ and $B_1$ respectively. The circumcircles of $A_1B_1C$ and $ABC$ meet each other at points $P$ and $C.$ The segments $AB_1$ and $A_1B$ intersect at $S.$ Let $Q$ and $R$ be the reflections of $S$ in the lines $CA$ and $CB$ respectively. Prove that the points $P,$ $Q,$ $R,$ and $C$ are concyclic.
2009 Tournament Of Towns, 4
A point is chosen on each side of a regular $2009$-gon. Let $S$ be the area of the $2009$-gon with vertices at these points. For each of the chosen points, reflect it across the midpoint of its side. Prove that the $2009$-gon with vertices at the images of these reflections also has area $S.$
[i](4 points)[/i]