This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2007 Iran Team Selection Test, 3

Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence. a) Prove that $B_{n}$ does not depend on location of $P$. b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.

2014 NIMO Problems, 8

Aaron takes a square sheet of paper, with one corner labeled $A$. Point $P$ is chosen at random inside of the square and Aaron folds the paper so that points $A$ and $P$ coincide. He cuts the sheet along the crease and discards the piece containing $A$. Let $p$ be the probability that the remaining piece is a pentagon. Find the integer nearest to $100p$. [i]Proposed by Aaron Lin[/i]

2005 Iran Team Selection Test, 2

Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that: \[PX || AC \ , \ PY ||AB \] Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$

2013 Ukraine Team Selection Test, 8

Let $ABC$ be a triangle with $AB \neq AC$ and circumcenter $O$. The bisector of $\angle BAC$ intersects $BC$ at $D$. Let $E$ be the reflection of $D$ with respect to the midpoint of $BC$. The lines through $D$ and $E$ perpendicular to $BC$ intersect the lines $AO$ and $AD$ at $X$ and $Y$ respectively. Prove that the quadrilateral $BXCY$ is cyclic.

2010 JBMO Shortlist, 1

$\textbf{Problem G1}$ Consider a triangle $ABC$ with $\angle ACB=90^{\circ}$. Let $F$ be the foot of the altitude from $C$. Circle $\omega$ touches the line segment $FB$ at point $P$, the altitude $CF$ at point $Q$ and the circumcircle of $ABC$ at point $R$. Prove that points $A, Q, R$ are collinear and $AP = AC$.

1994 Chile National Olympiad, 7

Let $ABCD$ be a rectangle of length $m$ and width $n$, with $m, n$ positive integers. Consider a ray of light that starts from $A$, reflects with an angle of $45^o$ on an opposite side and continues reflecting away at the same angle. $\bullet$ For any pair $(m,n)$, show that the ray meets a vertex at some point. $\bullet$ Suppose $m$ and $n$ are coprime. Determine the number of reflections made by the ray of light before encountering a vertex for the first time.

1974 Spain Mathematical Olympiad, 4

All three sides of an equilateral triangle are assumed to be reflective (except in the vertices), in such a way that they reflect the rays of light located in their plane, that fall on them and that come out of an interior point of the triangle. Determine the path of a ray of light that, starting from a vertex of the triangle reach another vertex of the same after reflecting successively on the three sides. Calculate the length of the path followed by the light assuming that the side of the triangle measures $1$ m.

1983 Bundeswettbewerb Mathematik, 1

The figure shows a triangular pool table with sides $a$, $b$ and $c$. Located at point $S$ on $c$ a sphere - which can be assumed as a point. After kick-off, as indicated in the figure, it runs through as a result of reflections to $a, b, a, b$ and $c$ (in $S$) always the same track. The reflection occurs according to law of reflection. Characterize entilrely all triangles $ABC$, which allow such an orbit, and determine the locus of $S$. [img]https://cdn.artofproblemsolving.com/attachments/5/b/7662943e5b9ad321226e0c5f5daa3c4ac9faaa.png[/img]

2003 IberoAmerican, 2

In a square $ABCD$, let $P$ and $Q$ be points on the sides $BC$ and $CD$ respectively, different from its endpoints, such that $BP=CQ$. Consider points $X$ and $Y$ such that $X\neq Y$, in the segments $AP$ and $AQ$ respectively. Show that, for every $X$ and $Y$ chosen, there exists a triangle whose sides have lengths $BX$, $XY$ and $DY$.

2012 ELMO Shortlist, 5

Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$. [i]Calvin Deng.[/i]

2006 Australia National Olympiad, 4

There are $n$ points on a circle, such that each line segment connecting two points is either red or blue. $P_iP_j$ is red if and only if $P_{i+1} P_{j+1}$ is blue, for all distinct $i, j$ in $\left\{1, 2, ..., n\right\}$. (a) For which values of $n$ is this possible? (b) Show that one can get from any point on the circle to any other point, by doing a maximum of 3 steps, where one step is moving from a point to another point through a red segment connecting these points.

1993 China Team Selection Test, 3

Let $ABC$ be a triangle and its bisector at $A$ cuts its circumcircle at $D.$ Let $I$ be the incenter of triangle $ABC,$ $M$ be the midpoint of $BC,$ $P$ is the symmetric to $I$ with respect to $M$ (Assuming $P$ is in the circumcircle). Extend $DP$ until it cuts the circumcircle again at $N.$ Prove that among segments $AN, BN, CN$, there is a segment that is the sum of the other two.

2015 Costa Rica - Final Round, 1

Let $ABCD$ be a quadrilateral whose diagonals are perpendicular, and let $S$ be the intersection of those diagonals. Let $K, L, M$ and $N$ be the reflections of $S$ on the sides $AB$, $BC$, $CD$ and $DA$ respectively. $BN$ cuts the circumcircle of $\vartriangle SKN$ at $E$ and $BM$ cuts the circumcircle of $\vartriangle SLM$ at $F$. Prove that the quadrilateral $EFLK$ is cyclic.

2001 Pan African, 2

Let $n$ be a positive integer. A child builds a wall along a line with $n$ identical cubes. He lays the first cube on the line and at each subsequent step, he lays the next cube either on the ground or on the top of another cube, so that it has a common face with the previous one. How many such distinct walls exist?

2012 India IMO Training Camp, 1

Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$. [i]Proposed by Jan Vonk, Belgium and Hojoo Lee, South Korea[/i]

2015 India IMO Training Camp, 1

In a triangle $ABC$, a point $D$ is on the segment $BC$, Let $X$ and $Y$ be the incentres of triangles $ACD$ and $ABD$ respectively. The lines $BY$ and $CX$ intersect the circumcircle of triangle $AXY$ at $P\ne Y$ and $Q\ne X$, respectively. Let $K$ be the point of intersection of lines $PX$ and $QY$. Suppose $K$ is also the reflection of $I$ in $BC$ where $I$ is the incentre of triangle $ABC$. Prove that $\angle BAC=\angle ADC=90^{\circ}$.

2013 Romanian Masters In Mathematics, 3

A token is placed at each vertex of a regular $2n$-gon. A [i]move[/i] consists in choosing an edge of the $2n$-gon and swapping the two tokens placed at the endpoints of that edge. After a finite number of moves have been performed, it turns out that every two tokens have been swapped exactly once. Prove that some edge has never been chosen.

2007 Kyiv Mathematical Festival, 2

The point $D$ at the side $AB$ of triangle $ABC$ is given. Construct points $E,F$ at sides $BC, AC$ respectively such that the midpoints of $DE$ and $DF$ are collinear with $B$ and the midpoints of $DE$ and $EF$ are collinear with $C.$

2012 NIMO Problems, 7

Point $P$ lies in the interior of rectangle $ABCD$ such that $AP + CP = 27$, $BP - DP = 17$, and $\angle DAP \cong \angle DCP$. Compute the area of rectangle $ABCD$. [i]Proposed by Aaron Lin[/i]

2010 Greece Team Selection Test, 3

Let $ABC$ be a triangle,$O$ its circumcenter and $R$ the radius of its circumcircle.Denote by $O_{1}$ the symmetric of $O$ with respect to $BC$,$O_{2}$ the symmetric of $O$ with respect to $AC$ and by $O_{3}$ the symmetric of $O$ with respect to $AB$. (a)Prove that the circles $C_{1}(O_{1},R)$, $C_{2}(O_{2},R)$, $C_{3}(O_{3},R)$ have a common point. (b)Denote by $T$ this point.Let $l$ be an arbitary line passing through $T$ which intersects $C_{1}$ at $L$, $C_{2}$ at $M$ and $C_{3}$ at $K$.From $K,L,M$ drop perpendiculars to $AB,BC,AC$ respectively.Prove that these perpendiculars pass through a point.

2005 Greece Team Selection Test, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

Cono Sur Shortlist - geometry, 2020.G1.4

Let $ABC$ be an acute scalene triangle. $D$ and $E$ are variable points in the half-lines $AB$ and $AC$ (with origin at $A$) such that the symmetric of $A$ over $DE$ lies on $BC$. Let $P$ be the intersection of the circles with diameter $AD$ and $AE$. Find the locus of $P$ when varying the line segment $DE$.

2007 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be a right triangle with $A = 90^{\circ}$ and $D \in (AC)$. Denote by $E$ the reflection of $A$ in the line $BD$ and $F$ the intersection point of $CE$ with the perpendicular in $D$ to $BC$. Prove that $AF, DE$ and $BC$ are concurrent.

2011 HMNT, 9

Let $ABC$ be a triangle with $AB = 9$, $BC = 10$, and $CA = 17$. Let $B'$ be the reflection of the point $B$ over the line $CA$. Let $G$ be the centroid of triangle $ABC$, and let $G'$ be the centroid of triangle $AB'C$. Determine the length of segment $GG'$.

2003 Tournament Of Towns, 5

Is it possible to tile $2003 \times 2003$ board by $1 \times 2$ dominoes placed horizontally and $1 \times 3$ rectangles placed vertically?