This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2011 IMAC Arhimede, 4

Inscribed circle of triangle $ABC$ touches sides $BC$, $CA$ and $AB$ at the points $X$, $Y$ and $Z$, respectively. Let $AA_{1}$, $BB_{1}$ and $CC_{1}$ be the altitudes of the triangle $ABC$ and $M$, $N$ and $P$ be the incenters of triangles $AB_{1}C_{1}$, $BC_{1}A_{1}$ and $CA_{1}B_{1}$, respectively. a) Prove that $M$, $N$ and $P$ are orthocentres of triangles $AYZ$, $BZX$ and $CXY$, respectively. b) Prove that common external tangents of these incircles, different from triangle sides, are concurent at orthocentre of triangle $XYZ$.

2022 Macedonian Mathematical Olympiad, Problem 2

Let $ABCD$ be cyclic quadrilateral and $E$ the midpoint of $AC$. The circumcircle of $\triangle CDE$ intersect the side $BC$ at $F$, which is different from $C$. If $B'$ is the reflection of $B$ across $F$, prove that $EF$ is tangent to the circumcircle of $\triangle B'DF$. [i]Proposed by Nikola Velov[/i]

2019 BMT Spring, 14

A regular hexagon has positive integer side length. A laser is emitted from one of the hexagon’s corners, and is reflected off the edges of the hexagon until it hits another corner. Let $a$ be the distance that the laser travels. What is the smallest possible value of $a^2$ such that $a > 2019$? You need not simplify/compute exponents.

2012 Online Math Open Problems, 24

In scalene $\triangle ABC$, $I$ is the incenter, $I_a$ is the $A$-excenter, $D$ is the midpoint of arc $BC$ of the circumcircle of $ABC$ not containing $A$, and $M$ is the midpoint of side $BC$. Extend ray $IM$ past $M$ to point $P$ such that $IM = MP$. Let $Q$ be the intersection of $DP$ and $MI_a$, and $R$ be the point on the line $MI_a$ such that $AR\parallel DP$. Given that $\frac{AI_a}{AI}=9$, the ratio $\frac{QM} {RI_a}$ can be expressed in the form $\frac{m}{n}$ for two relatively prime positive integers $m,n$. Compute $m+n$. [i]Ray Li.[/i] [hide="Clarifications"][list=1][*]"Arc $BC$ of the circumcircle" means "the arc with endpoints $B$ and $C$ not containing $A$".[/list][/hide]

2008 Balkan MO Shortlist, G2

Given a scalene acute triangle $ ABC$ with $ AC>BC$ let $ F$ be the foot of the altitude from $ C$. Let $ P$ be a point on $ AB$, different from $ A$ so that $ AF\equal{}PF$. Let $ H,O,M$ be the orthocenter, circumcenter and midpoint of $ [AC]$. Let $ X$ be the intersection point of $ BC$ and $ HP$. Let $ Y$ be the intersection point of $ OM$ and $ FX$ and let $ OF$ intersect $ AC$ at $ Z$. Prove that $ F,M,Y,Z$ are concyclic.

2006 QEDMO 3rd, 6

The incircle of a triangle $ABC$ touches its sides $BC$, $CA$, $AB$ at the points $X$, $Y$, $Z$, respectively. Let $X^{\prime}$, $Y^{\prime}$, $Z^{\prime}$ be the reflections of these points $X$, $Y$, $Z$ in the external angle bisectors of the angles $CAB$, $ABC$, $BCA$, respectively. Show that $Y^{\prime}Z^{\prime}\parallel BC$, $Z^{\prime}X^{\prime}\parallel CA$ and $X^{\prime}Y^{\prime}\parallel AB$.

2013 Nordic, 4

Let ${ABC}$ be an acute angled triangle, and ${H}$ a point in its interior. Let the reflections of ${H}$ through the sides ${AB}$ and ${AC}$ be called ${H_{c} }$ and ${H_{b} }$ , respectively, and let the reflections of H through the midpoints of these same sidesbe called ${H_{c}^{'} }$ and ${H_{b}^{'} }$, respectively. Show that the four points ${H_{b}, H_{b}^{'} , H_{c}}$, and ${H_{c}^{'} }$ are concyclic if and only if at least two of them coincide or ${H}$ lies on the altitude from ${A}$ in triangle ${ABC}$.

2009 Brazil Team Selection Test, 2

In an acute triangle $ ABC$ segments $ BE$ and $ CF$ are altitudes. Two circles passing through the point $ A$ and $ F$ and tangent to the line $ BC$ at the points $ P$ and $ Q$ so that $ B$ lies between $ C$ and $ Q$. Prove that lines $ PE$ and $ QF$ intersect on the circumcircle of triangle $ AEF$. [i]Proposed by Davood Vakili, Iran[/i]

2001 Turkey Team Selection Test, 2

A circle touches to diameter $AB$ of a unit circle with center $O$ at $T$ where $OT>1$. These circles intersect at two different points $C$ and $D$. The circle through $O$, $D$, and $C$ meet the line $AB$ at $P$ different from $O$. Show that \[|PA|\cdot |PB| = \dfrac {|PT|^2}{|OT|^2}.\]

2012 NIMO Problems, 8

A convex 2012-gon $A_1A_2A_3 \dots A_{2012}$ has the property that for every integer $1 \le i \le 1006$, $\overline{A_iA_{i+1006}}$ partitions the polygon into two congruent regions. Show that for every pair of integers $1 \le j < k \le 1006$, quadrilateral $A_jA_kA_{j+1006}A_{k+1006}$ is a parallelogram. [i]Proposed by Lewis Chen[/i]

1985 Kurschak Competition, 3

We reflected each vertex of a triangle on the opposite side. Prove that the area of the triangle formed by these three reflection points is smaller than the area of the initial triangle multiplied by five.

2010 Sharygin Geometry Olympiad, 21

A given convex quadrilateral $ABCD$ is such that $\angle ABD + \angle ACD > \angle BAC + \angle BDC.$ Prove that \[S_{ABD}+S_{ACD} > S_{BAC}+S_{BDC}.\]

2004 China Team Selection Test, 2

Two equal-radii circles with centres $ O_1$ and $ O_2$ intersect each other at $ P$ and $ Q$, $ O$ is the midpoint of the common chord $ PQ$. Two lines $ AB$ and $ CD$ are drawn through $ P$ ( $ AB$ and $ CD$ are not coincide with $ PQ$ ) such that $ A$ and $ C$ lie on circle $ O_1$ and $ B$ and $ D$ lie on circle $ O_2$. $ M$ and $ N$ are the mipoints of segments $ AD$ and $ BC$ respectively. Knowing that $ O_1$ and $ O_2$ are not in the common part of the two circles, and $ M$, $ N$ are not coincide with $ O$. Prove that $ M$, $ N$, $ O$ are collinear.

2017 CentroAmerican, 1

$ABC$ is a right-angled triangle, with $\angle ABC = 90^{\circ}$. $B'$ is the reflection of $B$ over $AC$. $M$ is the midpoint of $AC$. We choose $D$ on $\overrightarrow{BM}$, such that $BD = AC$. Prove that $B'C$ is the angle bisector of $\angle MB'D$. NOTE: An important condition not mentioned in the original problem is $AB<BC$. Otherwise, $\angle MB'D$ is not defined or $B'C$ is the external bisector.

2012 Turkey Junior National Olympiad, 2

In a convex quadrilateral $ABCD$, the diagonals are perpendicular to each other and they intersect at $E$. Let $P$ be a point on the side $AD$ which is different from $A$ such that $PE=EC.$ The circumcircle of triangle $BCD$ intersects the side $AD$ at $Q$ where $Q$ is also different from $A$. The circle, passing through $A$ and tangent to line $EP$ at $P$, intersects the line segment $AC$ at $R$. If the points $B, R, Q$ are concurrent then show that $\angle BCD=90^{\circ}$.

2009 Princeton University Math Competition, 8

Taotao wants to buy a bracelet. The bracelets have 7 different beads on them, arranged in a circle. Two bracelets are the same if one can be rotated or flipped to get the other. If she can choose the colors and placement of the beads, and the beads come in orange, white, and black, how many possible bracelets can she buy?

2008 APMO, 1

Let $ ABC$ be a triangle with $ \angle A < 60^\circ$. Let $ X$ and $ Y$ be the points on the sides $ AB$ and $ AC$, respectively, such that $ CA \plus{} AX \equal{} CB \plus{} BX$ and $ BA \plus{} AY \equal{} BC \plus{} CY$ . Let $ P$ be the point in the plane such that the lines $ PX$ and $ PY$ are perpendicular to $ AB$ and $ AC$, respectively. Prove that $ \angle BPC < 120^\circ$.

1983 AIME Problems, 11

The solid shown has a square base of side length $s$. The upper edge is parallel to the base and has length $2s$. All other edges have length $s$. Given that $s = 6 \sqrt{2}$, what is the volume of the solid? [asy] import three; size(170); pathpen = black+linewidth(0.65); pointpen = black; currentprojection = perspective(30,-20,10); real s = 6 * 2^.5; triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6); draw(F--B--C--F--E--A--B); draw(A--D--E, dashed); draw(D--C, dashed); label("$2s$", (s/2, s/2, 6), N); label("$s$", (s/2, 0, 0), SW); [/asy]

2013 Brazil Team Selection Test, 2

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.

2010 India Regional Mathematical Olympiad, 5

Let $ABC$ be a triangle in which $\angle A = 60^\circ$. Let $BE$ and $CF$ be the bisectors of $\angle B$ and $\angle C$ with $E$ on $AC$ and $F$ on $AB$. Let $M$ be the reflection of $A$ in line $EF$. Prove that $M$ lies on $BC$.

2014 NIMO Problems, 1

Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $CA=15$. Let $D$ be the point inside triangle $ABC$ with the property that $\overline{BD} \perp \overline{CD}$ and $\overline{AD} \perp \overline{BC}$. Then the length $AD$ can be expressed in the form $m-\sqrt{n}$, where $m$ and $n$ are positive integers. Find $100m+n$. [i]Proposed by Michael Ren[/i]

2009 USAMO, 5

Trapezoid $ ABCD$, with $ \overline{AB}\parallel{}\overline{CD}$, is inscribed in circle $ \omega$ and point $ G$ lies inside triangle $ BCD$. Rays $ AG$ and $ BG$ meet $ \omega$ again at points $ P$ and $ Q$, respectively. Let the line through $ G$ parallel to $ \overline{AB}$ intersects $ \overline{BD}$ and $ \overline{BC}$ at points $ R$ and $ S$, respectively. Prove that quadrilateral $ PQRS$ is cyclic if and only if $ \overline{BG}$ bisects $ \angle CBD$.

2018 Canadian Mathematical Olympiad Qualification, 2

We call a pair of polygons, $p$ and $q$, [i]nesting[/i] if we can draw one inside the other, possibly after rotation and/or reflection; otherwise we call them [i]non-nesting[/i]. Let $p$ and $q$ be polygons. Prove that if we can find a polygon $r$, which is similar to $q$, such that $r$ and $p$ are non-nesting if and only if $p$ and $q$ are not similar.

2012 Kazakhstan National Olympiad, 3

Line $PQ$ is tangent to the incircle of triangle $ABC$ in such a way that the points $P$ and $Q$ lie on the sides $AB$ and $AC$, respectively. On the sides $AB$ and $AC$ are selected points $M$ and $N$, respectively, so that $AM = BP$ and $AN = CQ$. Prove that all lines constructed in this manner $MN$ pass through one point

2014 Dutch IMO TST, 3

Let $H$ be the orthocentre of an acute triangle $ABC$. The line through $A$ perpendicular to $AC$ and the line through $B$ perpendicular to $BC$ intersect in $D$. The circle with centre $C$ through $H$ intersects the circumcircle of triangle $ABC$ in the points $E$ and $F$. Prove that $|DE| = |DF| = |AB|$.