Found problems: 1001
2000 Polish MO Finals, 2
Let a triangle $ABC$ satisfy $AC = BC$; in other words, let $ABC$ be an isosceles triangle with base $AB$. Let $P$ be a point inside the triangle $ABC$ such that $\angle PAB = \angle PBC$. Denote by $M$ the midpoint of the segment $AB$. Show that $\angle APM + \angle BPC = 180^{\circ}$.
2009 All-Russian Olympiad, 4
Given a set $ M$ of points $ (x,y)$ with integral coordinates satisfying $ x^2 + y^2\leq 10^{10}$. Two players play a game. One of them marks a point on his first move. After this, on each move the moving player marks a point, which is not yet marked and joins it with the previous marked point. Players are not allowed to mark a point symmetrical to the one just chosen. So, they draw a broken line. The requirement is that lengths of edges of this broken line must strictly increase. The player, which can not make a move, loses. Who have a winning strategy?
2013 ELMO Shortlist, 8
Let $ABC$ be a triangle, and let $D$, $A$, $B$, $E$ be points on line $AB$, in that order, such that $AC=AD$ and $BE=BC$. Let $\omega_1, \omega_2$ be the circumcircles of $\triangle ABC$ and $\triangle CDE$, respectively, which meet at a point $F \neq C$. If the tangent to $\omega_2$ at $F$ cuts $\omega_1$ again at $G$, and the foot of the altitude from $G$ to $FC$ is $H$, prove that $\angle AGH=\angle BGH$.
[i]Proposed by David Stoner[/i]
2013 Romanian Master of Mathematics, 3
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$. The lines $AB$ and $CD$ meet at $P$, the lines $AD$ and $BC$ meet at $Q$, and the diagonals $AC$ and $BD$ meet at $R$. Let $M$ be the midpoint of the segment $PQ$, and let $K$ be the common point of the segment $MR$ and the circle $\omega$. Prove that the circumcircle of the triangle $KPQ$ and $\omega$ are tangent to one another.
2011 Brazil Team Selection Test, 4
Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$
[i]Proposed by Nazar Serdyuk, Ukraine[/i]
2008 Harvard-MIT Mathematics Tournament, 8
Let $ ABC$ be an equilateral triangle with side length 2, and let $ \Gamma$ be a circle with radius $ \frac {1}{2}$ centered at the center of the equilateral triangle. Determine the length of the shortest path that starts somewhere on $ \Gamma$, visits all three sides of $ ABC$, and ends somewhere on $ \Gamma$ (not necessarily at the starting point). Express your answer in the form of $ \sqrt p \minus{} q$, where $ p$ and $ q$ are rational numbers written as reduced fractions.
2010 Sharygin Geometry Olympiad, 12
Let $AC$ be the greatest leg of a right triangle $ABC,$ and $CH$ be the altitude to its hypotenuse. The circle of radius $CH$ centered at $H$ intersects $AC$ in point $M.$ Let a point $B'$ be the reflection of $B$ with respect to the point $H.$ The perpendicular to $AB$ erected at $B'$ meets the circle in a point $K$. Prove that
[b]a)[/b] $B'M \parallel BC$
[b]b)[/b] $AK$ is tangent to the circle.
2011 IMO Shortlist, 6
Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$.
[i]Proposed by Jan Vonk, Belgium and Hojoo Lee, South Korea[/i]
2002 France Team Selection Test, 1
In an acute-angled triangle $ABC$, $A_1$ and $B_1$ are the feet of the altitudes from $A$ and $B$ respectively, and $M$ is the midpoint of $AB$.
a) Prove that $MA_1$ is tangent to the circumcircle of triangle $A_1B_1C$.
b) Prove that the circumcircles of triangles $A_1B_1C,BMA_1$, and $AMB_1$ have a common point.
2006 Germany Team Selection Test, 1
Let $A$, $B$, $C$, $D$, $E$, $F$ be six points on a circle such that $AE\parallel BD$ and $BC\parallel DF$. Let $X$ be the reflection of the point $D$ in the line $CE$. Prove that the distance from the point $X$ to the line $EF$ equals to the distance from the point $B$ to the line $AC$.
2013 India IMO Training Camp, 2
In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.
2014 National Olympiad First Round, 21
Let $ABCD$ be a trapezoid such that side $[AB]$ and side $[CD]$ are perpendicular to side $[BC]$. Let $E$ be a point on side $[BC]$ such that $\triangle AED$ is equilateral. If $|AB|=7$ and $|CD|=5$, what is the area of trapezoid $ABCD$?
$
\textbf{(A)}\ 27\sqrt{3}
\qquad\textbf{(B)}\ 42
\qquad\textbf{(C)}\ 24\sqrt{3}
\qquad\textbf{(D)}\ 40
\qquad\textbf{(E)}\ 36
$
1992 All Soviet Union Mathematical Olympiad, 563
$A$ and $B$ lie on a circle. $P$ lies on the minor arc $AB$. $Q$ and $R$ (distinct from $P$) also lie on the circle, so that $P$ and $Q$ are equidistant from $A$, and $P$ and $R$ are equidistant from $B$. Show that the intersection of $AR$ and $BQ$ is the reflection of $P$ in $AB$.
2009 Sharygin Geometry Olympiad, 4
Let $ P$ and $ Q$ be the common points of two circles. The ray with origin $ Q$ reflects from the first circle in points $ A_1$, $ A_2$,$ \ldots$ according to the rule ''the angle of incidence is equal to the angle of reflection''. Another ray with origin $ Q$ reflects from the second circle in the points $ B_1$, $ B_2$,$ \ldots$ in the same manner. Points $ A_1$, $ B_1$ and $ P$ occurred to be collinear. Prove that all lines $ A_iB_i$ pass through P.
2014 Baltic Way, 12
Triangle $ABC$ is given. Let $M$ be the midpoint of the segment $AB$ and $T$ be the midpoint of the arc $BC$ not containing $A$ of the circumcircle of $ABC.$ The point $K$ inside the triangle $ABC$ is such that $MATK$ is an isosceles trapezoid with $AT\parallel MK.$ Show that $AK = KC.$
2011 China Team Selection Test, 1
Let $AA',BB',CC'$ be three diameters of the circumcircle of an acute triangle $ABC$. Let $P$ be an arbitrary point in the interior of $\triangle ABC$, and let $D,E,F$ be the orthogonal projection of $P$ on $BC,CA,AB$, respectively. Let $X$ be the point such that $D$ is the midpoint of $A'X$, let $Y$ be the point such that $E$ is the midpoint of $B'Y$, and similarly let $Z$ be the point such that $F$ is the midpoint of $C'Z$. Prove that triangle $XYZ$ is similar to triangle $ABC$.
2022 AMC 8 -, 4
The letter [b]M[/b] in the figure below is first reflected over the line $q$ and then reflected over the line $p$. What is the resulting image?
[asy]
// pog diagram
usepackage("newtxtext");
size(3cm);
draw((-1,0)--(1,0)); draw((0,-1)--(0,1)); label("$\textbf{\textsf{M}}$",(0.25,0.6));
draw((-0.8,-0.8)--(0.8,0.8),linewidth(1.1)); label("$p$", (-1,0),NE); label("$q$", (-0.75,-0.75), N*1.5);
[/asy]
[asy]
// pog diagram
usepackage("newtxtext");
size(12.5cm);
draw((-1,0)--(1,0)); draw((0,-1)--(0,1)); label(rotate(90)*"$\textbf{\textsf{M}}$",(0.6,-0.25));
draw((-0.8,-0.8)--(0.8,0.8),linewidth(1.1));
label("$\textbf{(A)}$",(-1,1),W);
draw((2,0)--(4,0)); draw((3,-1)--(3,1)); label(rotate(270)*"$\textbf{\textsf{M}}$",(2.8,0.7));
draw((2.2,-0.8)--(3.8,0.8),linewidth(1.1));
label("$\textbf{(B)}$",(2,1),W);
draw((5,0)--(7,0)); draw((6,-1)--(6,1)); label(rotate(90)*"$\textbf{\textsf{M}}$",(5.4,0.2));
draw((5.2,-0.8)--(6.8,0.8),linewidth(1.1));
label("$\textbf{(C)}$",(5,1),W);
draw((-1,-2.5)--(1,-2.5)); draw((0,-3.5)--(0,-1.5)); label(rotate(180)*"$\textbf{\textsf{M}}$",(-0.25,-3.1));
draw((-0.8,-3.3)--(0.8,-1.7),linewidth(1.1));
label("$\textbf{(D)}$",(-1,-1.5),W);
draw((2,-2.5)--(4,-2.5)); draw((3,-3.5)--(3,-1.5)); label(rotate(270)*"$\textbf{\textsf{M}}$",(3.6,-2.75));
draw((2.2,-3.3)--(3.8,-1.7),linewidth(1.1));
label("$\textbf{(E)}$",(2,-1.5),W);
[/asy]
2004 Tournament Of Towns, 1
Let us call a triangle rational if each of its angles is a rational number when measured in degrees. Let us call a point inside triangle rational if joining it to the three vertices of the triangle we get three rational triangles. Show that any acute rational triangle contains at least three distinct rational points.
2005 IMO Shortlist, 6
Let $ABC$ be a triangle, and $M$ the midpoint of its side $BC$. Let $\gamma$ be the incircle of triangle $ABC$. The median $AM$ of triangle $ABC$ intersects the incircle $\gamma$ at two points $K$ and $L$. Let the lines passing through $K$ and $L$, parallel to $BC$, intersect the incircle $\gamma$ again in two points $X$ and $Y$. Let the lines $AX$ and $AY$ intersect $BC$ again at the points $P$ and $Q$. Prove that $BP = CQ$.
2008 Iran MO (3rd Round), 2
Let $ l_a,l_b,l_c$ be three parallel lines passing through $ A,B,C$ respectively. Let $ l_a'$ be reflection of $ l_a$ into $ BC$. $ l_b'$ and $ l_c'$ are defined similarly. Prove that $ l_a',l_b',l_c'$ are concurrent if and only if $ l_a$ is parallel to Euler line of triangle $ ABC$.
2013 Brazil National Olympiad, 6
The incircle of triangle $ABC$ touches sides $BC, CA$ and $AB$ at points $D, E$ and $F$, respectively. Let $P$ be the intersection of lines $AD$ and $BE$. The reflections of $P$ with respect to $EF, FD$ and $DE$ are $X,Y$ and $Z$, respectively. Prove that lines $AX, BY$ and $CZ$ are concurrent at a point on line $IO$, where $I$ and $O$ are the incenter and circumcenter of triangle $ABC$.
2014 AIME Problems, 8
Circle $C$ with radius $2$ has diameter $\overline{AB}$. Circle $D$ is internally tangent to circle $C$ at $A$. Circle $E$ is internally tangent to circle $C,$ externally tangent to circle $D,$ and tangent to $\overline{AB}$. The radius of circle $D$ is three times the radius of circle $E$ and can be written in the form $\sqrt{m} - n,$ where $m$ and $n$ are positive integers. Find $m+n$.
2008 Sharygin Geometry Olympiad, 7
(A.Zaslavsky) The circumradius of triangle $ ABC$ is equal to $ R$. Another circle with the same radius passes through the orthocenter $ H$ of this triangle and intersect its circumcirle in points $ X$, $ Y$. Point $ Z$ is the fourth vertex of parallelogram $ CXZY$. Find the circumradius of triangle $ ABZ$.
2013 Romanian Masters In Mathematics, 3
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$. The lines $AB$ and $CD$ meet at $P$, the lines $AD$ and $BC$ meet at $Q$, and the diagonals $AC$ and $BD$ meet at $R$. Let $M$ be the midpoint of the segment $PQ$, and let $K$ be the common point of the segment $MR$ and the circle $\omega$. Prove that the circumcircle of the triangle $KPQ$ and $\omega$ are tangent to one another.
2019 Latvia Baltic Way TST, 12
Let $AX$, $AY$ be tangents to circle $\omega$ from point $A$. Le $B$, $C$ be points inside $AX$ and $AY$ respectively, such that perimeter of $\triangle ABC$ is equal to length of $AX$. $D$ is reflection of $A$ over $BC$. Prove that circumcircle $\triangle BDC$ and $\omega$ are tangent to each other.