This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2009 USA Team Selection Test, 4

Let $ ABP, BCQ, CAR$ be three non-overlapping triangles erected outside of acute triangle $ ABC$. Let $ M$ be the midpoint of segment $ AP$. Given that $ \angle PAB \equal{} \angle CQB \equal{} 45^\circ$, $ \angle ABP \equal{} \angle QBC \equal{} 75^\circ$, $ \angle RAC \equal{} 105^\circ$, and $ RQ^2 \equal{} 6CM^2$, compute $ AC^2/AR^2$. [i]Zuming Feng.[/i]

2010 AMC 12/AHSME, 17

The entries in a $ 3\times3$ array include all the digits from 1 through 9, arranged so that the entries in every row and column are in increasing order. How many such arrays are there? $ \textbf{(A)}\ 18\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60$

2015 NIMO Problems, 6

Let $\triangle ABC$ be a triangle with $BC = 4, CA= 5, AB= 6$, and let $O$ be the circumcenter of $\triangle ABC$. Let $O_b$ and $O_c$ be the reflections of $O$ about lines $CA$ and $AB$ respectively. Suppose $BO_b$ and $CO_c$ intersect at $T$, and let $M$ be the midpoint of $BC$. Given that $MT^2 = \frac{p}{q}$ for some coprime positive integers $p$ and $q$, find $p+q$. [i]Proposed by Sreejato Bhattacharya[/i]

2005 Romania National Olympiad, 3

Let $ABCD$ be a quadrilateral with $AB\parallel CD$ and $AC \perp BD$. Let $O$ be the intersection of $AC$ and $BD$. On the rays $(OA$ and $(OB$ we consider the points $M$ and $N$ respectively such that $\angle ANC = \angle BMD = 90^\circ$. We denote with $E$ the midpoint of the segment $MN$. Prove that a) $\triangle OMN \sim \triangle OBA$; b) $OE \perp AB$. [i]Claudiu-Stefan Popa[/i]

1995 Italy TST, 2

Twenty-one rectangles of size $3\times 1$ are placed on an $8\times 8$ chessboard, leaving only one free unit square. What position can the free square lie at?

2009 CentroAmerican, 2

\item Two circles $ \Gamma_1$ and $ \Gamma_2$ intersect at points $ A$ and $ B$. Consider a circle $ \Gamma$ contained in $ \Gamma_1$ and $ \Gamma_2$, which is tangent to both of them at $ D$ and $ E$ respectively. Let $ C$ be one of the intersection points of line $ AB$ with $ \Gamma$, $ F$ be the intersection of line $ EC$ with $ \Gamma_2$ and $ G$ be the intersection of line $ DC$ with $ \Gamma_1$. Let $ H$ and $ I$ be the intersection points of line $ ED$ with $ \Gamma_1$ and $ \Gamma_2$ respectively. Prove that $ F$, $ G$, $ H$ and $ I$ are on the same circle.

2010 India National Olympiad, 5

Let $ ABC$ be an acute-angled triangle with altitude $ AK$. Let $ H$ be its ortho-centre and $ O$ be its circum-centre. Suppose $ KOH$ is an acute-angled triangle and $ P$ its circum-centre. Let $ Q$ be the reflection of $ P$ in the line $ HO$. Show that $ Q$ lies on the line joining the mid-points of $ AB$ and $ AC$.

2022 Vietnam TST, 4

An acute, non-isosceles triangle $ABC$ is inscribed in a circle with centre $O$. A line go through $O$ and midpoint $I$ of $BC$ intersects $AB, AC$ at $E, F$ respectively. Let $D, G$ be reflections to $A$ over $O$ and circumcentre of $(AEF)$, respectively. Let $K$ be the reflection of $O$ over circumcentre of $(OBC)$. $a)$ Prove that $D, G, K$ are collinear. $b)$ Let $M, N$ are points on $KB, KC$ that $IM\perp AC$, $IN\perp AB$. The midperpendiculars of $IK$ intersects $MN$ at $H$. Assume that $IH$ intersects $AB, AC$ at $P, Q$ respectively. Prove that the circumcircle of $\triangle APQ$ intersects $(O)$ the second time at a point on $AI$.

2010 AMC 10, 23

The entries in a $ 3\times3$ array include all the digits from 1 through 9, arranged so that the entries in every row and column are in increasing order. How many such arrays are there? $ \textbf{(A)}\ 18\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60$

Estonia Open Senior - geometry, 2018.2.5

Let $A'$ be the result of reflection of vertex $A$ of triangle ABC through line $BC$ and let $B'$ be the result of reflection of vertex $B$ through line $AC$. Given that $\angle BA' C = \angle BB'C$, can the largest angle of triangle $ABC$ be located: a) At vertex $A$, b) At vertex $B$, c) At vertex $C$?

2014 India IMO Training Camp, 1

In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.

2023 Israel National Olympiad, P3

A triangle $ABC$ is given together with an arbitrary circle $\omega$. Let $\alpha$ be the reflection of $\omega$ with respect to $A$, $\beta$ the reflection of $\omega$ with respect to $B$, and $\gamma$ the reflection of $\omega$ with respect to $C$. It is known that the circles $\alpha, \beta, \gamma$ don't intersect each other. Let $P$ be the meeting point of the two internal common tangents to $\beta, \gamma$ (see picture). Similarly, $Q$ is the meeting point of the internal common tangents of $\alpha, \gamma$, and $R$ is the meeting point of the internal common tangents of $\alpha, \beta$. Prove that the triangles $PQR, ABC$ are congruent.

2007 Balkan MO Shortlist, G2

Let $ABCD$ a convex quadrilateral with $AB=BC=CD$, with $AC$ not equal to $BD$ and $E$ be the intersection point of it's diagonals. Prove that $AE=DE$ if and only if $\angle BAD+\angle ADC = 120$.

2013 Germany Team Selection Test, 3

Let $ABC$ be an acute-angled triangle with circumcircle $\omega$. Prove that there exists a point $J$ such that for any point $X$ inside $ABC$ if $AX,BX,CX$ intersect $\omega$ in $A_1,B_1,C_1$ and $A_2,B_2,C_2$ be reflections of $A_1,B_1,C_1$ in midpoints of $BC,AC,AB$ respectively then $A_2,B_2,C_2,J$ lie on a circle.

2003 Tournament Of Towns, 5

Is it possible to tile $2003 \times 2003$ board by $1 \times 2$ dominoes placed horizontally and $1 \times 3$ rectangles placed vertically?

2000 Putnam, 3

The octagon $P_1P_2P_3P_4P_5P_6P_7P_8$ is inscribed in a circle with the vertices around the circumference in the given order. Given that the polygon $P_1P_3P_5P_7$ is a square of area $5$, and the polygon $P_2P_4P_6P_8$ is a rectangle of area $4$, find the maximum possible area of the octagon.

2002 Moldova National Olympiad, 4

The circles $ C_1$ and $ C_2$ with centers $ O_1$ and $ O_2$ respectively are externally tangent. Their common tangent not intersecting the segment $ O_1O_2$ touches $ C_1$ at $ A$ and $ C_2$ at $ B$. Let $ C$ be the reflection of $ A$ in $ O_1O_2$ and $ P$ be the intersection of $ AC$ and $ O_1O_2$. Line $ BP$ meets $ C_2$ again at $ L$. Prove that line $ CL$ is tangent to the circle $ C_2$.

2006 Rioplatense Mathematical Olympiad, Level 3, 1

The acute triangle $ABC$ with $AB\neq AC$ has circumcircle $\Gamma$, circumcenter $O$, and orthocenter $H$. The midpoint of $BC$ is $M$, and the extension of the median $AM$ intersects $\Gamma$ at $N$. The circle of diameter $AM$ intersects $\Gamma$ again at $A$ and $P$. Show that the lines $AP$, $BC$, and $OH$ are concurrent if and only if $AH = HN$.

2012 Benelux, 3

In triangle $ABC$ the midpoint of $BC$ is called $M$. Let $P$ be a variable interior point of the triangle such that $\angle CPM=\angle PAB$. Let $\Gamma$ be the circumcircle of triangle $ABP$. The line $MP$ intersects $\Gamma$ a second time at $Q$. Define $R$ as the reflection of $P$ in the tangent to $\Gamma$ at $B$. Prove that the length $|QR|$ is independent of the position of $P$ inside the triangle.

2025 Romania National Olympiad, 1

Let $M$ be a point in the plane, distinct from the vertices of $\triangle ABC$. Consider $N,P,Q$ the reflections of $M$ with respect to lines $AB, BC$ and $CA$, in this order. a) Prove that $N, P ,Q$ are collinear if and only if $M$ lies on the circumcircle of $\triangle ABC$. b) If $M$ does not lie on the circumcircle of $\triangle ABC$ and the centroids of triangles $\triangle ABC$ and $\triangle NPQ$ coincide, prove that $\triangle ABC$ is equilateral.

2004 IberoAmerican, 2

In the plane are given a circle with center $ O$ and radius $ r$ and a point $ A$ outside the circle. For any point $ M$ on the circle, let $ N$ be the diametrically opposite point. Find the locus of the circumcenter of triangle $ AMN$ when $ M$ describes the circle.

2009 China Team Selection Test, 1

Given that points $ D,E$ lie on the sidelines $ AB,BC$ of triangle $ ABC$, respectively, point $ P$ is in interior of triangle $ ABC$ such that $ PE \equal{} PC$ and $ \bigtriangleup DEP\sim \bigtriangleup PCA.$ Prove that $ BP$ is tangent of the circumcircle of triangle $ PAD.$

2004 Postal Coaching, 10

A convex quadrilateral $ABCD$ has an incircle. In each corner a circle is inscribed that also externally touches the two circles inscribed in the adjacent corners. Show that at least two circles have the same size.

2000 All-Russian Olympiad, 7

A quadrilateral $ABCD$ is circumscribed about a circle $\omega$. The lines $AB$ and $CD$ meet at $O$. A circle $\omega_1$ is tangent to side $BC$ at $K$ and to the extensions of sides $AB$ and $CD$, and a circle $\omega_2$ is tangent to side $AD$ at $L$ and to the extensions of sides $AB$ and $CD$. Suppose that points $O$, $K$, $L$ lie on a line. Prove that the midpoints of $BC$ and $AD$ and the center of $\omega$ also lie on a line.

2010 Tournament Of Towns, 4

A rectangle is divided into $2\times 1$ and $1\times 2$ dominoes. In each domino, a diagonal is drawn, and no two diagonals have common endpoints. Prove that exactly two corners of the rectangle are endpoints of these diagonals.