Found problems: 1001
1983 Tournament Of Towns, (036) O5
A version of billiards is played on a right triangular table, with a pocket in each of the three corners, and one of the acute angles being $30^o$. A ball is played from just in front of the pocket at the $30^o$. vertex toward the midpoint of the opposite side. Prove that if the ball is played hard enough, it will land in the pocket of the $60^o$ vertex after $8$ reflections.
2006 MOP Homework, 1
$ ABC$ is an acute triangle. The points $ B'$ and $ C'$are the reflections
of $ B$ and $ C$ across the lines $ AC$ and $ AB$ respectively. Suppose
that the circumcircles of triangles$ ABB$' and $ ACC'$ meet at $ A$
and $ P$. Prove that the line $ PA$ passes through the circumcenter
of triangle$ ABC.$
2017 CentroAmerican, 1
$ABC$ is a right-angled triangle, with $\angle ABC = 90^{\circ}$. $B'$ is the reflection of $B$ over $AC$. $M$ is the midpoint of $AC$. We choose $D$ on $\overrightarrow{BM}$, such that $BD = AC$. Prove that $B'C$ is the angle bisector of $\angle MB'D$.
NOTE: An important condition not mentioned in the original problem is $AB<BC$. Otherwise, $\angle MB'D$ is not defined or $B'C$ is the external bisector.
2002 India IMO Training Camp, 13
Let $ABC$ and $PQR$ be two triangles such that
[list]
[b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$.
[b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$
[/list]
Prove that $AB+AC=PQ+PR$.
1999 USAMO, 6
Let $ABCD$ be an isosceles trapezoid with $AB \parallel CD$. The inscribed circle $\omega$ of triangle $BCD$ meets $CD$ at $E$. Let $F$ be a point on the (internal) angle bisector of $\angle DAC$ such that $EF \perp CD$. Let the circumscribed circle of triangle $ACF$ meet line $CD$ at $C$ and $G$. Prove that the triangle $AFG$ is isosceles.
1995 Iran MO (2nd round), 2
Let $ABC$ be an acute triangle and let $\ell$ be a line in the plane of triangle $ABC.$ We've drawn the reflection of the line $\ell$ over the sides $AB, BC$ and $AC$ and they intersect in the points $A', B'$ and $C'.$ Prove that the incenter of the triangle $A'B'C'$ lies on the circumcircle of the triangle $ABC.$
2008 Peru IMO TST, 1
Let $ ABC$ be a triangle and let $ I$ be the incenter. $ Ia$ $ Ib$ and $ Ic$ are the excenters opposite to points $ A$ $ B$ and $ C$ respectively. Let $ La$ be the line joining the orthocenters of triangles $ IBC$ and $ IaBC$. Define $ Lb$ and $ Lc$ in the same way.
Prove that $ La$ $ Lb$ and $ Lc$ are concurrent.
Daniel
2024 Canada National Olympiad, 1
Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.
2012 AIME Problems, 15
Triangle $ABC$ is inscribed in circle $\omega$ with $AB = 5$, $BC = 7$, and $AC = 3$. The bisector of angle $A$ meets side $BC$ at $D$ and circle $\omega$ at a second point $E$. Let $\gamma$ be the circle with diameter $DE$. Circles $\omega$ and $\gamma$ meet at $E$ and a second point $F$. Then $AF^2 = \frac mn$, where m and n are relatively prime positive integers. Find $m + n$.
2010 Canada National Olympiad, 1
For all natural $n$, an $n$-staircase is a figure consisting of unit squares, with one square in the first row, two squares in the second row, and so on, up to $n$ squares in the $n^{th}$ row, such that all the left-most squares in each row are aligned vertically.
Let $f(n)$ denote the minimum number of square tiles requires to tile the $n$-staircase, where the side lengths of the square tiles can be any natural number. e.g. $f(2)=3$ and $f(4)=7$.
(a) Find all $n$ such that $f(n)=n$.
(b) Find all $n$ such that $f(n) = n+1$.
2012 APMO, 4
Let $ ABC $ be an acute triangle. Denote by $ D $ the foot of the perpendicular line drawn from the point $ A $ to the side $ BC $, by $M$ the midpoint of $ BC $, and by $ H $ the orthocenter of $ ABC $. Let $ E $ be the point of intersection of the circumcircle $ \Gamma $ of the triangle $ ABC $ and the half line $ MH $, and $ F $ be the point of intersection (other than $E$) of the line $ ED $ and the circle $ \Gamma $. Prove that $ \tfrac{BF}{CF} = \tfrac{AB}{AC} $ must hold.
(Here we denote $XY$ the length of the line segment $XY$.)
1999 IMO Shortlist, 3
A set $ S$ of points from the space will be called [b]completely symmetric[/b] if it has at least three elements and fulfills the condition that for every two distinct points $ A$ and $ B$ from $ S$, the perpendicular bisector plane of the segment $ AB$ is a plane of symmetry for $ S$. Prove that if a completely symmetric set is finite, then it consists of the vertices of either a regular polygon, or a regular tetrahedron or a regular octahedron.
1969 IMO Shortlist, 47
$C$ is a point on the semicircle diameter $AB$, between $A$ and $B$. $D$ is the foot of the perpendicular from $C$ to $AB$. The circle $K_1$ is the incircle of $ABC$, the circle $K_2$ touches $CD,DA$ and the semicircle, the circle $K_3$ touches $CD,DB$ and the semicircle. Prove that $K_1,K_2$ and $K_3$ have another common tangent apart from $AB$.
2016 IMO Shortlist, G4
Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.
2007 Germany Team Selection Test, 3
Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.
2004 All-Russian Olympiad, 3
A triangle $ T$ is contained inside a point-symmetrical polygon $ M.$ The triangle $ T'$ is the mirror image of the triangle $ T$ with the reflection at one point $ P$, which inside the triangle $ T$ lies. Prove that at least one of the vertices of the triangle $ T'$ lies in inside or on the boundary of the polygon $ M.$
2003 India IMO Training Camp, 5
On the real number line, paint red all points that correspond to integers of the form $81x+100y$, where $x$ and $y$ are positive integers. Paint the remaining integer point blue. Find a point $P$ on the line such that, for every integer point $T$, the reflection of $T$ with respect to $P$ is an integer point of a different colour than $T$.
1995 Italy TST, 2
Twenty-one rectangles of size $3\times 1$ are placed on an $8\times 8$ chessboard, leaving only one free unit square. What position can the free square lie at?
2013 All-Russian Olympiad, 2
Acute-angled triangle $ABC$ is inscribed into circle $\Omega$. Lines tangent to $\Omega$ at $B$ and $C$ intersect at $P$. Points $D$ and $E$ are on $AB$ and $AC$ such that $PD$ and $PE$ are perpendicular to $AB$ and $AC$ respectively. Prove that the orthocentre of triangle $ADE$ is the midpoint of $BC$.
2018 Iran MO (1st Round), 21
The point $P$ is chosen inside or on the equilateral triangle $ABC$ of side length $1$. The reflection of $P$ with respect to $AB$ is $K$, the reflection of $K$ about $BC$ is $M$, and the reflection of $M$ with respect to $AC$ is $N$. What is the maximum length of $NP$?
$\textbf{(A)}\ 2\sqrt 3\qquad\textbf{(B)}\ \sqrt 3\qquad\textbf{(C)}\ \frac{\sqrt 3}{2} \qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 1$
2015 Belarus Team Selection Test, 2
In a cyclic quadrilateral $ABCD$, the extensions of sides $AB$ and $CD$ meet at point $P$, and the extensions of sides $AD$ and $BC$ meet at point $Q$. Prove that the distance between the orthocenters of triangles $APD$ and $AQB$ is equal to the distance between the orthocenters of triangles $CQD$ and $BPC$.
2014 PUMaC Algebra A, 1
On the number line, consider the point $x$ that corresponds to the value $10$. Consider $24$ distinct integer points $y_1$, $y_2$, $\ldots$, $y_{24}$ on the number line such that for all $k$ such that $1\leq k\leq 12$, we have that $y_{2k-1}$ is the reflection of $y_{2k}$ across $x$. Find the minimum possible value of \[\textstyle\sum_{n=1}^{24}(|y_n-1|+|y_n+1|).\]
1986 Brazil National Olympiad, 1
A ball moves endlessly on a circular billiard table. When it hits the edge it is reflected. Show that if it passes through a point on the table three times, then it passes through it infinitely many times.
2015 India IMO Training Camp, 1
Let $ABC$ be a triangle in which $CA>BC>AB$. Let $H$ be its orthocentre and $O$ its circumcentre. Let $D$ and $E$ be respectively the midpoints of the arc $AB$ not containing $C$ and arc $AC$ not containing $B$. Let $D'$ and $E'$ be respectively the reflections of $D$ in $AB$ and $E$ in $AC$. Prove that $O, H, D', E'$ lie on a circle if and only if $A, D', E'$ are collinear.
2017 Balkan MO Shortlist, G4
The acuteangled triangle $ABC$ with circumcenter $O$ is given. The midpoints of the sides $BC, CA$ and $AB$ are $D, E$ and $F$ respectively. An arbitrary point $M$ on the side $BC$, different of $D$, is choosen. The straight lines $AM$ and $EF$ intersects at the point $N$ and the straight line $ON$ cut again the circumscribed circle of the triangle $ODM$ at the point $P$. Prove that the reflection of the point $M$ with respect to the midpoint of the segment $DP$ belongs on the nine points circle of the triangle $ABC$.