Found problems: 1001
2001 Brazil Team Selection Test, Problem 4
Let $ABC$ be a triangle with circumcenter $O$. Let $P$ and $Q$ be points on the segments $AB$ and $AC$, respectively, such that $BP : PQ : QC = AC : CB : BA$.
Prove that the points $A$, $P$, $Q$ and $O$ lie on one circle.
[i]Alternative formulation.[/i] Let $O$ be the center of the circumcircle of a triangle $ABC$. If $P$ and $Q$ are points on the sides $AB$ and $AC$, respectively, satisfying $\frac{BP}{PQ}=\frac{CA}{BC}$ and $\frac{CQ}{PQ}=\frac{AB}{BC}$, then show that the points $A$, $P$, $Q$ and $O$ lie on one circle.
2016 IMO Shortlist, G4
Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.
2012 All-Russian Olympiad, 2
The inscribed circle $\omega$ of the non-isosceles acute-angled triangle $ABC$ touches the side $BC$ at the point $D$. Suppose that $I$ and $O$ are the centres of inscribed circle and circumcircle of triangle $ABC$ respectively. The circumcircle of triangle $ADI$ intersects $AO$ at the points $A$ and $E$. Prove that $AE$ is equal to the radius $r$ of $\omega$.
1992 Dutch Mathematical Olympiad, 3
Consider the configuration of six squares as shown on the picture. Prove that the sum of the area of the three outer squares ($ I,II$ and $ III$) equals three times the sum of the areas of the three inner squares ($ IV,V$ and $ VI$).
2013 ELMO Shortlist, 2
Let $ABC$ be a scalene triangle with circumcircle $\Gamma$, and let $D$,$E$,$F$ be the points where its incircle meets $BC$, $AC$, $AB$ respectively. Let the circumcircles of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ meet $\Gamma$ a second time at $X,Y,Z$ respectively. Prove that the perpendiculars from $A,B,C$ to $AX,BY,CZ$ respectively are concurrent.
[i]Proposed by Michael Kural[/i]
2024 Sharygin Geometry Olympiad, 8.6
A circle $\omega$ touched lines $a$ and $b$ at points $A$ and $B$ respectively. An arbitrary tangent to the circle meets $a$ and $b$ at $X$ and $Y$ respectively. Points $X'$ and $Y'$ are the reflections of $X$ and $Y$ about $A$ and $B$ respectively. Find the locus of projections of the center of the circle to the lines $X'Y'$.
1991 AIME Problems, 12
Rhombus $PQRS$ is inscribed in rectangle $ABCD$ so that vertices $P$, $Q$, $R$, and $S$ are interior points on sides $\overline{AB}$, $\overline{BC}$, $\overline{CD}$, and $\overline{DA}$, respectively. It is given that $PB=15$, $BQ=20$, $PR=30$, and $QS=40$. Let $m/n$, in lowest terms, denote the perimeter of $ABCD$. Find $m+n$.
2006 Australia National Olympiad, 4
There are $n$ points on a circle, such that each line segment connecting two points is either red or blue.
$P_iP_j$ is red if and only if $P_{i+1} P_{j+1}$ is blue, for all distinct $i, j$ in $\left\{1, 2, ..., n\right\}$.
(a) For which values of $n$ is this possible?
(b) Show that one can get from any point on the circle to any other point, by doing a maximum of 3 steps, where one step is moving from a point to another point through a red segment connecting these points.
2017 Estonia Team Selection Test, 3
Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.
2012 Romanian Masters In Mathematics, 6
Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$.
[i](Russia) Fedor Ivlev[/i]
2010 Iran MO (3rd Round), 5
In a triangle $ABC$, $I$ is the incenter. $D$ is the reflection of $A$ to $I$. the incircle is tangent to $BC$ at point $E$. $DE$ cuts $IG$ at $P$ ($G$ is centroid). $M$ is the midpoint of $BC$. prove that
a) $AP||DM$.(15 points)
b) $AP=2DM$. (10 points)
2016 Brazil Team Selection Test, 1
We say that a triangle $ABC$ is great if the following holds: for any point $D$ on the side $BC$, if $P$ and $Q$ are the feet of the perpendiculars from $D$ to the lines $AB$ and $AC$, respectively, then the reflection of $D$ in the line $PQ$ lies on the circumcircle of the triangle $ABC$. Prove that triangle $ABC$ is great if and only if $\angle A = 90^{\circ}$ and $AB = AC$.
[i]Senior Problems Committee of the Australian Mathematical Olympiad Committee[/i]
2014 Dutch IMO TST, 2
Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.
1979 IMO Longlists, 30
Let $M$ be a set of points in a plane with at least two elements. Prove that if $M$ has two axes of symmetry $g_1$ and $g_2$ intersecting at an angle $\alpha = q\pi$, where $q$ is irrational, then $M$ must be infinite.
2017 Balkan MO Shortlist, G4
The acuteangled triangle $ABC$ with circumcenter $O$ is given. The midpoints of the sides $BC, CA$ and $AB$ are $D, E$ and $F$ respectively. An arbitrary point $M$ on the side $BC$, different of $D$, is choosen. The straight lines $AM$ and $EF$ intersects at the point $N$ and the straight line $ON$ cut again the circumscribed circle of the triangle $ODM$ at the point $P$. Prove that the reflection of the point $M$ with respect to the midpoint of the segment $DP$ belongs on the nine points circle of the triangle $ABC$.
2011 All-Russian Olympiad, 2
On side $BC$ of parallelogram $ABCD$ ($A$ is acute) lies point $T$ so that triangle $ATD$ is an acute triangle. Let $O_1$, $O_2$, and $O_3$ be the circumcenters of triangles $ABT$, $DAT$, and $CDT$ respectively. Prove that the orthocenter of triangle $O_1O_2O_3$ lies on line $AD$.
2007 Iran Team Selection Test, 3
Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence.
a) Prove that $B_{n}$ does not depend on location of $P$.
b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.
2010 Iran MO (3rd Round), 1
1. In a triangle $ABC$, $O$ is the circumcenter and $I$ is the incenter. $X$ is the reflection of $I$ to $O$. $A_1$ is foot of the perpendicular from $X$ to $BC$. $B_1$ and $C_1$ are defined similarly. prove that $AA_1$,$BB_1$ and $CC_1$ are concurrent.(12 points)
2020 Vietnam Team Selection Test, 6
In the scalene acute triangle $ABC$, $O$ is the circumcenter. $AD, BE, CF$ are three altitudes. And $H$ is the orthocenter. Let $G$ be the reflection point of $O$ through $BC$. Draw the diameter $EK$ in $\odot (GHE)$, and the diameter $FL$ in $\odot (GHF)$.
a) If $AK, AL$ and $DE, DF$ intersect at $U, V$ respectively, prove that $UV\parallel EF$.
b) Suppose $S$ is the intersection of the two tangents of the circumscribed circle of $\triangle ABC$ at $B$ and $C$. $T$ is the intersection of $DS$ and $HG$. And $M,N$ are the projection of $H$ on $TE,TF$ respectively. Prove that $M,N,E,F$ are concyclic.
2006 Romania Team Selection Test, 2
Let $A$ be point in the exterior of the circle $\mathcal C$. Two lines passing through $A$ intersect the circle $\mathcal C$ in points $B$ and $C$ (with $B$ between $A$ and $C$) respectively in $D$ and $E$ (with $D$ between $A$ and $E$). The parallel from $D$ to $BC$ intersects the second time the circle $\mathcal C$ in $F$. Let $G$ be the second point of intersection between the circle $\mathcal C$ and the line $AF$ and $M$ the point in which the lines $AB$ and $EG$ intersect. Prove that
\[ \frac 1{AM} = \frac 1{AB} + \frac 1{AC}. \]
2012 France Team Selection Test, 2
Let $ABC$ be an acute-angled triangle with $AB\not= AC$. Let $\Gamma$ be the circumcircle, $H$ the orthocentre and $O$ the centre of $\Gamma$. $M$ is the midpoint of $BC$. The line $AM$ meets $\Gamma$ again at $N$ and the circle with diameter $AM$ crosses $\Gamma$ again at $P$. Prove that the lines $AP,BC,OH$ are concurrent if and only if $AH=HN$.
1998 Turkey Team Selection Test, 1
Squares $BAXX^{'}$ and $CAYY^{'}$ are drawn in the exterior of a triangle $ABC$ with $AB = AC$. Let $D$ be the midpoint of $BC$, and $E$ and $F$ be the feet of the perpendiculars from an arbitrary point $K$ on the segment $BC$ to $BY$ and $CX$, respectively.
$(a)$ Prove that $DE = DF$ .
$(b)$ Find the locus of the midpoint of $EF$ .
2017 Sharygin Geometry Olympiad, P20
Given a right-angled triangle $ABC$ and two perpendicular lines $x$ and $y$ passing through the vertex $A$ of its right angle. For an arbitrary point $X$ on $x$ define $y_B$ and $y_C$ as the reflections of $y$ about $XB$ and $ XC $ respectively. Let $Y$ be the common point of $y_b$ and $y_c$. Find the locus of $Y$ (when $y_b$ and $y_c$ do not coincide).
2005 Morocco TST, 4
A convex quadrilateral $ABCD$ has an incircle. In each corner a circle is inscribed that also externally touches the two circles inscribed in the adjacent corners. Show that at least two circles have the same size.
2009 Belarus Team Selection Test, 2
In an acute triangle $ ABC$ segments $ BE$ and $ CF$ are altitudes. Two circles passing through the point $ A$ and $ F$ and tangent to the line $ BC$ at the points $ P$ and $ Q$ so that $ B$ lies between $ C$ and $ Q$. Prove that lines $ PE$ and $ QF$ intersect on the circumcircle of triangle $ AEF$.
[i]Proposed by Davood Vakili, Iran[/i]