This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2018 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be a triangle with $AB > AC$. Point $P \in (AB)$ is such that $\angle ACP = \angle ABC$. Let $D$ be the reflection of $P$ into the line $AC$ and let $E$ be the point in which the circumcircle of $BCD$ meets again the line $AC$. Prove that $AE = AC$.

2019 All-Russian Olympiad, 4

Let $ABC$ be an acute-angled triangle with $AC<BC.$ A circle passes through $A$ and $B$ and crosses the segments $AC$ and $BC$ again at $A_1$ and $B_1$ respectively. The circumcircles of $A_1B_1C$ and $ABC$ meet each other at points $P$ and $C.$ The segments $AB_1$ and $A_1B$ intersect at $S.$ Let $Q$ and $R$ be the reflections of $S$ in the lines $CA$ and $CB$ respectively. Prove that the points $P,$ $Q,$ $R,$ and $C$ are concyclic.

1968 Spain Mathematical Olympiad, 8

We will assume that the sides of a square are reflective and we will designate them with the names of the four cardinal points. Marking a point on the side $N$ , determine in which direction a ray of light should exit (into the interior of the square) so that it returns to it after having undergone $n$ reflections on the side $E$ , another $n$ on the side $W$ , $m$ on the $S$ and $m - 1$ on the $N$, where $n$ and $m$ are known natural numbers. What happens if m and $n$ are not prime to each other? Calculate the length of the light ray considered as a function of $m$ and $n$, and of the length of the side of the square.

1969 IMO Longlists, 47

$C$ is a point on the semicircle diameter $AB$, between $A$ and $B$. $D$ is the foot of the perpendicular from $C$ to $AB$. The circle $K_1$ is the incircle of $ABC$, the circle $K_2$ touches $CD,DA$ and the semicircle, the circle $K_3$ touches $CD,DB$ and the semicircle. Prove that $K_1,K_2$ and $K_3$ have another common tangent apart from $AB$.

2003 IberoAmerican, 2

In a square $ABCD$, let $P$ and $Q$ be points on the sides $BC$ and $CD$ respectively, different from its endpoints, such that $BP=CQ$. Consider points $X$ and $Y$ such that $X\neq Y$, in the segments $AP$ and $AQ$ respectively. Show that, for every $X$ and $Y$ chosen, there exists a triangle whose sides have lengths $BX$, $XY$ and $DY$.

2007 Middle European Mathematical Olympiad, 3

A tetrahedron is called a [i]MEMO-tetrahedron[/i] if all six sidelengths are different positive integers where one of them is $ 2$ and one of them is $ 3$. Let $ l(T)$ be the sum of the sidelengths of the tetrahedron $ T$. (a) Find all positive integers $ n$ so that there exists a MEMO-Tetrahedron $ T$ with $ l(T)\equal{}n$. (b) How many pairwise non-congruent MEMO-tetrahedrons $ T$ satisfying $ l(T)\equal{}2007$ exist? Two tetrahedrons are said to be non-congruent if one cannot be obtained from the other by a composition of reflections in planes, translations and rotations. (It is not neccessary to prove that the tetrahedrons are not degenerate, i.e. that they have a positive volume).

2007 Italy TST, 3

Let $p \geq 5$ be a prime. (a) Show that exists a prime $q \neq p$ such that $q| (p-1)^{p}+1$ (b) Factoring in prime numbers $(p-1)^{p}+1 = \prod_{i=1}^{n}p_{i}^{a_{i}}$ show that: \[\sum_{i=1}^{n}p_{i}a_{i}\geq \frac{p^{2}}2 \]

1976 Miklós Schweitzer, 11

Let $ \xi_1,\xi_2,...$ be independent, identically distributed random variables with distribution \[ P(\xi_1=-1)=P(\xi_1=1)=\frac 12 .\] Write $ S_n=\xi_1+\xi_2+...+\xi_n \;(n=1,2,...),\ \;S_0=0\ ,$ and \[ T_n= \frac{1}{\sqrt{n}} \max _{ 0 \leq k \leq n}S_k .\] Prove that $ \liminf_{n \rightarrow \infty} (\log n)T_n=0$ with probability one. [i]P. Revesz[/i]

2000 Canada National Olympiad, 4

Let $ABCD$ be a convex quadrilateral with $\angle CBD = 2 \angle ADB$, $\angle ABD = 2 \angle CDB$ and $AB = CB$. Prove that $AD = CD$.

2013 Online Math Open Problems, 33

Let $n$ be a positive integer. E. Chen and E. Chen play a game on the $n^2$ points of an $n \times n$ lattice grid. They alternately mark points on the grid such that no player marks a point that is on or inside a non-degenerate triangle formed by three marked points. Each point can be marked only once. The game ends when no player can make a move, and the last player to make a move wins. Determine the number of values of $n$ between $1$ and $2013$ (inclusive) for which the first player can guarantee a win, regardless of the moves that the second player makes. [i]Ray Li[/i]

2014 Online Math Open Problems, 29

Let $ABC$ be a triangle with circumcenter $O$, incenter $I$, and circumcircle $\Gamma$. It is known that $AB = 7$, $BC = 8$, $CA = 9$. Let $M$ denote the midpoint of major arc $\widehat{BAC}$ of $\Gamma$, and let $D$ denote the intersection of $\Gamma$ with the circumcircle of $\triangle IMO$ (other than $M$). Let $E$ denote the reflection of $D$ over line $IO$. Find the integer closest to $1000 \cdot \frac{BE}{CE}$. [i]Proposed by Evan Chen[/i]

2019 Romania Team Selection Test, 3

Let $AD, BE$, and $CF$ denote the altitudes of triangle $\vartriangle ABC$. Points $E'$ and $F'$ are the reflections of $E$ and $F$ over $AD$, respectively. The lines $BF'$ and $CE'$ intersect at $X$, while the lines $BE'$ and $CF'$ intersect at the point $Y$. Prove that if $H$ is the orthocenter of $\vartriangle ABC$, then the lines $AX, YH$, and $BC$ are concurrent.

1994 China Team Selection Test, 3

Find the smallest $n \in \mathbb{N}$ such that if any 5 vertices of a regular $n$-gon are colored red, there exists a line of symmetry $l$ of the $n$-gon such that every red point is reflected across $l$ to a non-red point.

2014 Regional Olympiad of Mexico Center Zone, 4

Let $ABCD$ be a square and let $M$ be the midpoint of $BC$. Let $C ^ \prime$ be the reflection of $C$ wrt to $DM$. The parallel to $AB$ passing through $C ^ \prime$ intersects $AD$ at $R$ and $BC$ at $S$. Show that $$\frac {RC ^ \prime} {C ^\prime S} = \frac {3} {2}$$

MathLinks Contest 7th, 4.1

Let $ A,B,C,D,E$ be five distinct points, such that no three of them lie on the same line. Prove that \[ AB\plus{}BC\plus{}CA \plus{} DE < AD \plus{} AE \plus{} BD\plus{}BE \plus{} CD\plus{}CE .\]

2001 AMC 12/AHSME, 13

The parabola with equation $ y \equal{} ax^2 \plus{} bx \plus{} c$ and vertex $ (h,k)$ is reflected about the line $ y \equal{} k$. This results in the parabola with equation $ y \equal{} dx^2 \plus{} ex \plus{} f$. Which of the following equals $ a \plus{} b \plus{} c \plus{} d \plus{} e \plus{} f$? $ \textbf{(A)} \ 2b \qquad \textbf{(B)} \ 2c \qquad \textbf{(C)} \ 2a \plus{} 2b \qquad \textbf{(D)} \ 2h \qquad \textbf{(E)} \ 2k$

2008 District Olympiad, 4

Let $ ABCD$ be a cyclic quadrilater. Denote $ P\equal{}AD\cap BC$ and $ Q\equal{}AB \cap CD$. Let $ E$ be the fourth vertex of the parallelogram $ ABCE$ and $ F\equal{}CE\cap PQ$. Prove that $ D,E,F$ and $ Q$ lie on the same circle.

Mathley 2014-15, 3

In a triangle $ABC$, $D$ is the reflection of $A$ about the sideline $BC$. A circle $(K)$ with diameter $AD$ meets $DB,DC$ at $M,N$ which are distinct from $D$. Let $E,F$ be the midpoint of $CA,AB$. The circumcircles of $KEM,KFN$ meet each other again at $L$, distinct from $K$. Let $KL$ meets $EF$ at $X$; points $Y,Z$ are defined in the same manner. Prove that three lines $AX,BY,CZ$ are concurrent. Tran Quang Hung, Dean of the Faculty of Science, Thanh Xuan, Hanoi.

1983 IMO Longlists, 14

Let $\ell$ be tangent to the circle $k$ at $B$. Let $A$ be a point on $k$ and $P$ the foot of perpendicular from $A$ to $\ell$. Let $M$ be symmetric to $P$ with respect to $AB$. Find the set of all such points $M.$

2013 China Western Mathematical Olympiad, 3

Let $ABC$ be a triangle, and $B_1,C_1$ be its excenters opposite $B,C$. $B_2,C_2$ are reflections of $B_1,C_1$ across midpoints of $AC,AB$. Let $D$ be the extouch at $BC$. Show that $AD$ is perpendicular to $B_2C_2$

2009 Spain Mathematical Olympiad, 6

Inside a circle of center $ O$ and radius $ r$, take two points $ A$ and $ B$ symmetrical about $ O$. We consider a variable point $ P$ on the circle and draw the chord $ \overline{PP'}\perp \overline{AP}$. Let $ C$ is the symmetric of $ B$ about $ \overline{PP'}$ ($ \overline{PP}'$ is the axis of symmetry) . Find the locus of point $ Q \equal{} \overline{PP'}\cap\overline{AC}$ when we change $ P$ in the circle.

2013 Iran Team Selection Test, 13

$P$ is an arbitrary point inside acute triangle $ABC$. Let $A_1,B_1,C_1$ be the reflections of point $P$ with respect to sides $BC,CA,AB$. Prove that the centroid of triangle $A_1B_1C_1$ lies inside triangle $ABC$.

2005 USA Team Selection Test, 5

Find all finite sets $S$ of points in the plane with the following property: for any three distinct points $A,B,$ and $C$ in $S,$ there is a fourth point $D$ in $S$ such that $A,B,C,$ and $D$ are the vertices of a parallelogram (in some order).

2012 India IMO Training Camp, 1

Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$. [i]Proposed by Jan Vonk, Belgium and Hojoo Lee, South Korea[/i]

2007 Ukraine Team Selection Test, 9

Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.