This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 567

2000 Cono Sur Olympiad, 3

Inside a $2\times 2$ square, lines parallel to a side of the square (both horizontal and vertical) are drawn thereby dividing the square into rectangles. The rectangles are alternately colored black and white like a chessboard. Prove that if the total area of the white rectangles is equal to the total area of the black rectangles, then one can cut out the black rectangles and reassemble them into a $1\times 2$ rectangle.

2013 F = Ma, 4

The sign shown below consists of two uniform legs attached by a frictionless hinge. The coefficient of friction between the ground and the legs is $\mu$. Which of the following gives the maximum value of $\theta$ such that the sign will not collapse? $\textbf{(A) } \sin \theta = 2 \mu \\ \textbf{(B) } \sin \theta /2 = \mu / 2\\ \textbf{(C) } \tan \theta / 2 = \mu\\ \textbf{(D) } \tan \theta = 2 \mu \\ \textbf{(E) } \tan \theta / 2 = 2 \mu$

2002 AIME Problems, 5

Tags: rotation
Let $A_1, A_2, A_3, \ldots, A_{12}$ be the vertices of a regular dodecagon. How many distinct squares in the plane of the dodecagon have at least two vertices in the set $\{A_1,A_2,A_3,\ldots,A_{12}\}?$

1985 AIME Problems, 2

When a right triangle is rotated about one leg, the volume of the cone produced is $800 \pi$ $\text{cm}^3$. When the triangle is rotated about the other leg, the volume of the cone produced is $1920 \pi$ $\text{cm}^3$. What is the length (in cm) of the hypotenuse of the triangle?

2023 Argentina National Olympiad, 1

Let $n$ be a positive with $n\geq 3$. Consider a board of $n \times n$ boxes. In each step taken the colors of the $5$ boxes that make up the figure bellow change color (black boxes change to white and white boxes change to black) The figure can be rotated $90°, 180°$ or $270°$. Firstly, all the boxes are white.Determine for what values of $n$ it can be achieved, through a series of steps, that all the squares on the board are black.

2013 Princeton University Math Competition, 6

Tags: geometry , rotation
Draw an equilateral triangle with center $O$. Rotate the equilateral triangle $30^\circ, 60^\circ, 90^\circ$ with respect to $O$ so there would be four congruent equilateral triangles on each other. Look at the diagram. If the smallest triangle has area $1$, the area of the original equilateral triangle could be expressed as $p+q\sqrt r$ where $p,q,r$ are positive integers and $r$ is not divisible by a square greater than $1$. Find $p+q+r$.

2008 National Olympiad First Round, 12

In how many ways a cube can be painted using seven different colors in such a way that no two faces are in same color? $ \textbf{(A)}\ 154 \qquad\textbf{(B)}\ 203 \qquad\textbf{(C)}\ 210 \qquad\textbf{(D)}\ 240 \qquad\textbf{(E)}\ \text{None of the above} $

1986 IMO, 1

Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.

1984 Canada National Olympiad, 2

Alice and Bob are in a hardware store. The store sells coloured sleeves that fit over keys to distinguish them. The following conversation takes place: [color=#0000FF]Alice:[/color] Are you going to cover your keys? [color=#FF0000]Bob:[/color] I would like to, but there are only $7$ colours and I have $8$ keys. [color=#0000FF]Alice:[/color] Yes, but you could always distinguish a key by noticing that the red key next to the green key was different from the red key next to the blue key. [color=#FF0000]Bob:[/color] You must be careful what you mean by "[i]next to[/i]" or "[i]three keys over from[/i]" since you can turn the key ring over and the keys are arranged in a circle. [color=#0000FF]Alice:[/color] Even so, you don't need $8$ colours. [b]Problem:[/b] What is the smallest number of colours needed to distinguish $n$ keys if all the keys are to be covered.

2012 IFYM, Sozopol, 7

A quadrilateral $ABCD$ is inscribed in a circle with center $O$. Let $A_1 B_1 C_1 D_1$ be the image of $ABCD$ after rotation with center $O$ and angle $\alpha \in (0,90^\circ)$. The points $P,Q,R$ and $S$ are intersections of $AB$ and $A_1 B_1$, $BC$ and $B_1 C_1$, $CD$ and $C_1 D_1$, and $DA$ and $D_1 A_1$. Prove that $PQRS$ is a parallelogram.

2010 Today's Calculation Of Integral, 566

In the coordinate space, consider the cubic with vertices $ O(0,\ 0,\ 0),\ A(1,\ 0,\ 0),\ B(1,\ 1,\ 0),\ C(0,\ 1,\ 0),\ D(0,\ 0,\ 1),\ E(1,\ 0,\ 1),\ F(1,\ 1,\ 1),\ G(0,\ 1,\ 1)$. Find the volume of the solid generated by revolution of the cubic around the diagonal $ OF$ as the axis of rotation.

2014 Kyiv Mathematical Festival, 2

Tags: rotation
Can an $8\times8$ board be covered with 13 equal 5-celled figures? It's alowed to rotate the figures or turn them over. [size=85](Kyiv mathematical festival 2014)[/size]

2009 Moldova Team Selection Test, 1

[color=darkblue]Points $ X$, $ Y$ and $ Z$ are situated on the sides $ (BC)$, $ (CA)$ and $ (AB)$ of the triangles $ ABC$, such that triangles $ XYZ$ and $ ABC$ are similiar. Prove that circumcircle of $ AYZ$ passes through a fixed point.[/color]

2005 Bulgaria National Olympiad, 4

Let $ABC$ be a triangle with $AC\neq BC$, and let $A^{\prime }B^{\prime }C$ be a triangle obtained from $ABC$ after some rotation centered at $C$. Let $M,E,F$ be the midpoints of the segments $BA^{\prime },AC$ and $CB^{\prime }$ respectively. If $EM=FM$, find $\widehat{EMF}$.

2010 Iran MO (3rd Round), 4

[b]carpeting[/b] suppose that $S$ is a figure in the plane such that it's border doesn't contain any lattice points. suppose that $x,y$ are two lattice points with the distance $1$ (we call a point lattice point if it's coordinates are integers). suppose that we can cover the plane with copies of $S$ such that $x,y$ always go on lattice points ( you can rotate or reverse copies of $S$). prove that the area of $S$ is equal to lattice points inside it. time allowed for this question was 1 hour.

2009 Today's Calculation Of Integral, 467

Let the curve $ C: y\equal{}x\sqrt{9\minus{}x^2}\ (x\geq 0)$. (1) Find the maximum value of $ y$. (2) Find the area of the figure bounded by the curve $ C$ and the $ x$ axis. (3) Find the volume of the solid generated by rotation of the figure about the $ y$ axis.

1987 National High School Mathematics League, 4

$B$ is the center of unit circle. $A,C$ are points on the circle (the order of $A,B,C$ is clockwise), and $\angle ABC=2\alpha(0<\alpha<\frac{\pi}{3})$. Then we will rotate $\triangle ABC$ anticlockwise. In the first rotation, $A$ is the center of rotation, the result is that $B$ is on the circle. In the second rotation, $B$ is the center of rotation, the result is that $C$ is on the circle. In the third rotation, $C$ is the center of rotation, the result is that $A$ is on the circle. ... After we rotate for $100$ times, the distance $A$ travelled is $\text{(A)}22\pi(1+\sin\alpha)-66\alpha\qquad\text{(B)}\frac{67}{3}\pi\qquad\text{(C)}22\pi+\frac{68}{3}\pi\sin\alpha-66\alpha\qquad\text{(D)}33\pi-66\alpha$

2000 Harvard-MIT Mathematics Tournament, 8

Let $\vec{v_1},\vec{v_2},\vec{v_3},\vec{v_4}$ and $\vec{v_5}$ be vectors in three dimensions. Show that for some $i,j$ in $1,2,3,4,5$, $\vec{v_i}\cdot \vec{v_j}\ge 0$.

2011 Kosovo National Mathematical Olympiad, 4

A point $P$ is given in the square $ABCD$ such that $\overline{PA}=3$, $\overline{PB}=7$ and $\overline{PD}=5$. Find the area of the square.

2014 AIME Problems, 10

A disk with radius $1$ is externally tangent to a disk with radius $5$. Let $A$ be the point where the disks are tangent, $C$ be the center of the smaller disk, and $E$ be the center of the larger disk. While the larger disk remains fixed, the smaller disk is allowed to roll along the outside of the larger disk until the smaller disk has turned through an angle of $360^\circ$. That is, if the center of the smaller disk has moved to the point $D$, and the point on the smaller disk that began at $A$ has now moved to point $B$, then $\overline{AC}$ is parallel to $\overline{BD}$. Then $\sin^2(\angle BEA)=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1990 Turkey Team Selection Test, 4

Let $ABCD$ be a convex quadrilateral such that \[\begin{array}{rl} E,F \in [AB],& AE = EF = FB \\ G,H \in [BC],& BG = GH = HC \\ K,L \in [CD],& CK = KL = LD \\ M,N \in [DA],& DM = MN = NA \end{array}\] Let \[[NG] \cap [LE] = \{P\}, [NG]\cap [KF] = \{Q\},\] \[{[}MH] \cap [KF] = \{R\}, [MH]\cap [LE]=\{S\}\] Prove that [list=a][*]$Area(ABCD) = 9 \cdot Area(PQRS)$ [*] $NP=PQ=QG$ [/list]

2006 Estonia National Olympiad, 5

A pawn is placed on a square of a $ n \times n$ board. There are two types of legal moves: (a) the pawn can be moved to a neighbouring square, which shares a common side with the current square; or (b) the pawn can be moved to a neighbouring square, which shares a common vertex, but not a common side with the current square. Any two consecutive moves must be of different type. Find all integers $ n \ge 2$, for which it is possible to choose an initial square and a sequence of moves such that the pawn visits each square exactly once (it is not required that the pawn returns to the initial square).

2023 AMC 10, 19

The line segment formed by $A(1, 2)$ and $B(3, 3)$ is rotated to the line segment formed by $A'(3, 1)$ and $B'(4, 3)$ about the point $P(r, s)$. What is $|r-s|$? $\text{A) } \frac{1}{4} \qquad \text{B) } \frac{1}{2} \qquad \text{C) } \frac{3}{4} \qquad \text{D) } \frac{2}{3} \qquad \text{E) } 1$

1997 China Team Selection Test, 1

Given a real number $\lambda > 1$, let $P$ be a point on the arc $BAC$ of the circumcircle of $\bigtriangleup ABC$. Extend $BP$ and $CP$ to $U$ and $V$ respectively such that $BU = \lambda BA$, $CV = \lambda CA$. Then extend $UV$ to $Q$ such that $UQ = \lambda UV$. Find the locus of point $Q$.

1992 Vietnam National Olympiad, 2

Let $H$ be a rectangle with angle between two diagonal $\leq 45^{0}$. Rotation $H$ around the its center with angle $0^{0}\leq x\leq 360^{0}$ we have rectangle $H_{x}$. Find $x$ such that $[H\cap H_{x}]$ minimum, where $[S]$ is area of $S$.