Found problems: 196
1998 AMC 12/AHSME, 14
A parabola has vertex at $(4,-5)$ and has two $x$-intercepts, one positive and one negative. If this parabola is the graph of $y = ax^2 + bx + c$, which of $a$, $b$, and $c$ must be positive?
$ \textbf{(A)}\ \text{Only }a\qquad \textbf{(B)}\ \text{Only }b\qquad \textbf{(C)}\ \text{Only }c\qquad \textbf{(D)}\ \text{Only }a\text{ and }b\qquad \textbf{(E)}\ \text{None}$
1988 AIME Problems, 11
Let $w_1, w_2, \dots, w_n$ be complex numbers. A line $L$ in the complex plane is called a mean line for the points $w_1, w_2, \dots, w_n$ if $L$ contains points (complex numbers) $z_1, z_2, \dots, z_n$ such that
\[ \sum_{k = 1}^n (z_k - w_k) = 0. \]
For the numbers $w_1 = 32 + 170i$, $w_2 = -7 + 64i$, $w_3 = -9 +200i$, $w_4 = 1 + 27i$, and $w_5 = -14 + 43i$, there is a unique mean line with $y$-intercept 3. Find the slope of this mean line.
1990 AIME Problems, 7
A triangle has vertices $P=(-8,5)$, $Q=(-15,-19)$, and $R=(1,-7)$. The equation of the bisector of $\angle P$ can be written in the form $ax+2y+c=0$. Find $a+c$.
2010 Today's Calculation Of Integral, 569
In the coordinate plane, denote by $ S(a)$ the area of the region bounded by the line passing through the point $ (1,\ 2)$ with the slope $ a$ and the parabola $ y\equal{}x^2$. When $ a$ varies in the range of $ 0\leq a\leq 6$, find the value of $ a$ such that $ S(a)$ is minimized.
PEN Q Problems, 8
Show that a polynomial of odd degree $2m+1$ over $\mathbb{Z}$, \[f(x)=c_{2m+1}x^{2m+1}+\cdots+c_{1}x+c_{0},\] is irreducible if there exists a prime $p$ such that \[p \not\vert c_{2m+1}, p \vert c_{m+1}, c_{m+2}, \cdots, c_{2m}, p^{2}\vert c_{0}, c_{1}, \cdots, c_{m}, \; \text{and}\; p^{3}\not\vert c_{0}.\]
JBMO Geometry Collection, 2013
Let $ABC$ be an acute-angled triangle with $AB<AC$ and let $O$ be the centre of its circumcircle $\omega$. Let $D$ be a point on the line segment $BC$ such that $\angle BAD = \angle CAO$. Let $E$ be the second point of intersection of $\omega$ and the line $AD$. If $M$, $N$ and $P$ are the midpoints of the line segments $BE$, $OD$ and $AC$, respectively, show that the points $M$, $N$ and $P$ are collinear.
1996 AMC 12/AHSME, 25
Given that $x^2 + y^2 = 14x + 6y + 6$, what is the largest possible value that $3x + 4y$ can have?
$\text{(A)}\ 72 \qquad \text{(B)}\ 73 \qquad \text{(C)}\ 74 \qquad \text{(D)}\ 75\qquad \text{(E)}\ 76$
1982 IMO Longlists, 11
A rectangular pool table has a hole at each of three of its corners. The lengths of sides of the table are the real numbers $a$ and $b$. A billiard ball is shot from the fourth corner along its angle bisector. The ball falls in one of the holes. What should the relation between $a$ and $b$ be for this to happen?
2001 AIME Problems, 8
A certain function $f$ has the properties that $f(3x)=3f(x)$ for all positive real values of $x$, and that $f(x)=1-\mid x-2 \mid$ for $1\leq x \leq 3$. Find the smallest $x$ for which $f(x)=f(2001)$.
2004 AMC 8, 23
Tess runs counterclockwise around rectangular block JKLM. She lives at corner J. Which graph could represent her straight-line distance from home?
[asy]pair J=(0,6), K=origin, L=(10,0), M=(10,6);
draw(J--K--L--M--cycle);
label("$J$", J, dir((5,3)--J));
label("$K$", K, dir((5,3)--K));
label("$L$", L, dir((5,3)--L));
label("$M$", M, dir((5,3)--M));[/asy]
$\textbf{(A)}$
[asy]size(80);defaultpen(linewidth(0.8));
draw((16,0)--origin--(0,16));
draw(origin--(15,15));
label("time", (8,0), S);
label(rotate(90)*"distance", (0,8), W);
[/asy]
$\textbf{(B)}$
[asy]size(80);defaultpen(linewidth(0.8));
draw((16,0)--origin--(0,16));
draw((0,6)--(1,6)--(1,12)--(2,12)--(2,11)--(3,11)--(3,1)--(12,1)--(12,0));
label("time", (8,0), S);
label(rotate(90)*"distance", (0,8), W);
[/asy]
$\textbf{(C)}$
[asy]size(80);defaultpen(linewidth(0.8));
draw((16,0)--origin--(0,16));
draw(origin--(2.7,8)--(3,9)^^(11,9)--(14,0));
draw(Arc((4,9), 1, 0, 180));
draw(Arc((10,9), 1, 0, 180));
draw(Arc((7,9), 2, 180,360));
label("time", (8,0), S);
label(rotate(90)*"distance", (0,8), W);
[/asy]
$\textbf{(D)}$
[asy]size(80);defaultpen(linewidth(0.8));
draw((16,0)--origin--(0,16));
draw(origin--(2,6)--(7,14)--(10,12)--(14,0));
label("time", (8,0), S);
label(rotate(90)*"distance", (0,8), W);
[/asy]
$\textbf{(E)}$
[asy]size(80);defaultpen(linewidth(0.8));
draw((16,0)--origin--(0,16));
draw(origin--(3,6)--(7,6)--(10,12)--(14,12));
label("time", (8,0), S);
label(rotate(90)*"distance", (0,8), W);
[/asy]
2007 F = Ma, 9
A large wedge rests on a horizontal frictionless surface, as shown. A block starts from rest and slides down the inclined surface of the wedge, which is rough. During the motion of the block, the center of mass of the block and wedge
[asy]
draw((0,0)--(10,0),linewidth(1));
filldraw((2.5,0)--(6.5,2.5)--(6.5,0)--cycle, gray(.9),linewidth(1));
filldraw((5, 12.5/8)--(6,17.5/8)--(6-5/8, 17.5/8+1)--(5-5/8,12.5/8+1)--cycle, gray(.2));
[/asy]
$\textbf{(A)}\ \text{does not move}$
$\textbf{(B)}\ \text{moves horizontally with constant speed}$
$\textbf{(C)}\ \text{moves horizontally with increasing speed}$
$\textbf{(D)}\ \text{moves vertically with increasing speed}$
$\textbf{(E)}\ \text{moves both horizontally and vertically}$
2005 Harvard-MIT Mathematics Tournament, 1
Let $ f(x) = x^3 + ax + b $, with $ a \ne b $, and suppose the tangent lines to the graph of $f$ at $x=a$ and $x=b$ are parallel. Find $f(1)$.
2006 AMC 10, 20
In rectangle $ ABCD$, we have $ A \equal{} (6, \minus{} 22)$, $ B \equal{} (2006,178)$, and $ D \equal{} (8,y)$, for some integer $ y$. What is the area of rectangle $ ABCD$?
$ \textbf{(A) } 4000 \qquad \textbf{(B) } 4040 \qquad \textbf{(C) } 4400 \qquad \textbf{(D) } 40,000 \qquad \textbf{(E) } 40,400$
2005 Harvard-MIT Mathematics Tournament, 9
Let $AC$ be a diameter of a circle $ \omega $ of radius $1$, and let $D$ be a point on $AC$ such that $CD=\frac{1}{5}$. Let $B$ be the point on $\omega$ such that $DB$ is perpendicular to $AC$, and $E$ is the midpoint of $DB$. The line tangent to $\omega$ at $B$ intersects line $CE$ at the point $X$. Compute $AX$.
2013 Stanford Mathematics Tournament, 8
The function $f(x)$ is defined for all $x\ge 0$ and is always nonnegative. It has the additional property that if any line is drawn from the origin with any positive slope $m$, it intersects the graph $y=f(x)$ at precisely one point, which is $\frac{1}{\sqrt{m}}$ units from the origin. Let $a$ be the unique real number for which $f$ takes on its maximum value at $x=a$ (you may assume that such an $a$ exists). Find $\int_{0}^{a}f(x) \, dx$.
1963 AMC 12/AHSME, 7
Given the four equations:
$\textbf{(1)}\ 3y-2x=12 \qquad
\textbf{(2)}\ -2x-3y=10 \qquad
\textbf{(3)}\ 3y+2x=12 \qquad
\textbf{(4)}\ 2y+3x=10$
The pair representing the perpendicular lines is:
$\textbf{(A)}\ \text{(1) and (4)} \qquad
\textbf{(B)}\ \text{(1) and (3)} \qquad
\textbf{(C)}\ \text{(1) and (2)} \qquad
\textbf{(D)}\ \text{(2) and (4)} \qquad
\textbf{(E)}\ \text{(2) and (3)}$
2013 JBMO Shortlist, 3
Let $ABC$ be an acute-angled triangle with $AB<AC$ and let $O$ be the centre of its circumcircle $\omega$. Let $D$ be a point on the line segment $BC$ such that $\angle BAD = \angle CAO$. Let $E$ be the second point of intersection of $\omega$ and the line $AD$. If $M$, $N$ and $P$ are the midpoints of the line segments $BE$, $OD$ and $AC$, respectively, show that the points $M$, $N$ and $P$ are collinear.
1951 AMC 12/AHSME, 33
The roots of the equation $ x^2 \minus{} 2x \equal{} 0$ can be obtained graphically by finding the abscissas of the points of intersection of each of the following pairs of equations except the pair:
$ \textbf{(A)}\ y \equal{} x^2, y \equal{} 2x \qquad\textbf{(B)}\ y \equal{} x^2 \minus{} 2x, y \equal{} 0 \qquad\textbf{(C)}\ y \equal{} x, y \equal{} x \minus{} 2$
$ \textbf{(D)}\ y \equal{} x^2 \minus{} 2x \plus{} 1, y \equal{} 1 \qquad\textbf{(E)}\ y \equal{} x^2 \minus{} 1, y \equal{} 2x \minus{} 1$
[i][Note: Abscissas means x-coordinate.][/i]
2005 AMC 12/AHSME, 18
Let $ A(2,2)$ and $ B(7,7)$ be points in the plane. Define $ R$ as the region in the first quadrant consisting of those points $ C$ such that $ \triangle ABC$ is an acute triangle. What is the closest integer to the area of the region $ R$?
$ \textbf{(A)}\ 25 \qquad \textbf{(B)}\ 39 \qquad \textbf{(C)}\ 51 \qquad \textbf{(D)}\ 60 \qquad \textbf{(E)}\ 80$
2012 All-Russian Olympiad, 3
Consider the parallelogram $ABCD$ with obtuse angle $A$. Let $H$ be the feet of perpendicular from $A$ to the side $BC$. The median from $C$ in triangle $ABC$ meets the circumcircle of triangle $ABC$ at the point $K$. Prove that points $K,H,C,D$ lie on the same circle.
2012 Hanoi Open Mathematics Competitions, 4
[b]Q4.[/b] A man travels from town $A$ to town $E$ through $B,C$ and $D$ with uniform speeds 3km/h, 2km/h, 6km/h and 3km/h on the horizontal, up slope, down slope and horizontal road, respectively. If the road between town $A$ and town $E$ can be classified as horizontal, up slope, down slope and horizontal and total length of each typr of road is the same, what is the average speed of his journey?
\[(A) \; 2 \text{km/h} \qquad (B) \; 2,5 \text{km/h} ; \qquad (C ) \; 3 \text{km/h} ; \qquad (D) \; 3,5 \text{km/h} ; \qquad (E) \; 4 \text{km/h}.\]
2009 Baltic Way, 20
In the future city Baltic Way there are sixteen hospitals. Every night exactly four of them must be on duty for emergencies. Is it possible to arrange the schedule in such a way that after twenty nights every pair of hospitals have been on common duty exactly once?
2006 ISI B.Stat Entrance Exam, 1
If the normal to the curve $x^{\frac{2}{3}}+y^{\frac23}=a^{\frac23}$ at some point makes an angle $\theta$ with the $X$-axis, show that the equation of the normal is
\[y\cos\theta-x\sin\theta=a\cos 2\theta\]
2000 Stanford Mathematics Tournament, 7
Find $ [\sqrt{19992000}]$ where $ [x]$ is the greatest integer less than or equal to $ x$.
2006 China Second Round Olympiad, 4
Given a right triangular prism $A_1B_1C_1 - ABC$ with $\angle BAC = \frac{\pi}{2}$ and $AB = AC = AA_1$, let $G$, $E$ be the midpoints of $A_1B_1$, $CC_1$ respectively, and $D$, $F$ be variable points lying on segments $AC$, $AB$ (not including endpoints) respectively. If $GD \bot EF$, the range of the length of $DF$ is
${ \textbf{(A)}\ [\frac{1}{\sqrt{5}}, 1)\qquad\textbf{(B)}\ [\frac{1}{5}, 2)\qquad\textbf{(C)}\ [1, \sqrt{2})\qquad\textbf{(D)}} [\frac{1}{\sqrt{2}}, \sqrt{2})\qquad $