Found problems: 473
2019 Flanders Math Olympiad, 1
Two touching balls with radii $a$ and $b$ are enclosed in a cylindrical tin of diameter $d$ . Both balls hit the top surface and the shell of the cylinder. The largest ball also hits the bottom surface. Show that $\sqrt{d} =\sqrt{a} +\sqrt{b}$
[img]https://1.bp.blogspot.com/-O4B3P3bghFs/Xy1fDv9zGkI/AAAAAAAAMSQ/ePLVnsXsRi0mz3SWBpIzfGdsizWoLmGVACLcBGAsYHQ/s0/flanders%2B2019%2Bp1.png[/img]
2022 Sharygin Geometry Olympiad, 24
Let $OABCDEF$ be a hexagonal pyramid with base $ABCDEF$ circumscribed around a sphere $\omega$. The plane passing through the touching points of $\omega$ with faces $OFA$, $OAB$ and $ABCDEF$ meets $OA$ at point $A_1$, points $B_1$, $C_1$, $D_1$, $E_1$ and $F_1$ are defined similarly. Let $\ell$, $m$ and $n$ be the lines $A_1D_1$, $B_1E_1$ and $C_1F_1$ respectively. It is known that $\ell$ and $m$ are coplanar, also $m$ and $n$ are coplanar. Prove that $\ell$ and $n$ are coplanar.
2008 All-Russian Olympiad, 4
Each face of a tetrahedron can be placed in a circle of radius $ 1$. Show that the tetrahedron can be placed in a sphere of radius $ \frac{3}{2\sqrt2}$.
2005 AMC 12/AHSME, 22
A rectangular box $ P$ is inscribed in a sphere of radius $ r$. The surface area of $ P$ is 384, and the sum of the lengths of its 12 edges is 112. What is $ r$?
$ \textbf{(A)}\ 8 \qquad \textbf{(B)}\ 10 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 14 \qquad \textbf{(E)}\ 16$
2021 CCA Math Bonanza, T6
Three spheres have radii $144$, $225$, and $400$, are pairwise externally tangent to each other, and are all tangent to the same plane at $A$, $B$, and $C$. Compute the area of triangle $ABC$.
[i]2021 CCA Math Bonanza Team Round #6[/i]
2013 F = Ma, 13
There is a ring outside of Saturn. In order to distinguish if the ring is actually a part of Saturn or is instead part of the satellites of Saturn, we need to know the relation between the velocity $v$ of each layer in the ring and the distance $R$ of the layer to the center of Saturn. Which of the following statements is correct?
$\textbf{(A) }$ If $v \propto R$, then the layer is part of Saturn.
$\textbf{(B) }$ If $v^2 \propto R$, then the layer is part of the satellites of Saturn.
$\textbf{(C) }$ If $v \propto 1/R$, then the layer is part of Saturn.
$\textbf{(D) }$ If $v^2 \propto 1/R$, then the layer is part of Saturn.
$\textbf{(E) }$ If $v \propto R^2$, then the layer is part of the satellites of Saturn.
2000 National High School Mathematics League, 11
A sphere is tangent to six edges of a regular tetrahedron. If the length of each edge is $a$, then the volume of the sphere is________.
1977 AMC 12/AHSME, 27
There are two spherical balls of different sizes lying in two corners of a rectangular room, each touching two walls and the floor. If there is a point on each ball which is $5$ inches from each wall which that ball touches and $10$ inches from the floor, then the sum of the diameters of the balls is
$\textbf{(A) }20\text{ inches}\qquad\textbf{(B) }30\text{ inches}\qquad\textbf{(C) }40\text{ inches}\qquad$
$\textbf{(D) }60\text{ inches}\qquad \textbf{(E) }\text{not determined by the given information}$
2016 Sharygin Geometry Olympiad, P24
A sphere is inscribed into a prism $ABCA'B'C'$ and touches its lateral faces $BCC'B', CAA'C', ABB'A' $ at points $A_o, B_o, C_o$ respectively. It is known that $\angle A_oBB' = \angle B_oCC' =\angle C_oAA'$.
a) Find all possible values of these angles.
b) Prove that segments $AA_o, BB_o, CC_o$ concur.
c) Prove that the projections of the incenter to $A'B', B'C', C'A'$ are the vertices of a regular triangle.
1974 IMO Longlists, 44
We are given $n$ mass points of equal mass in space. We define a sequence of points $O_1,O_2,O_3,\ldots $ as follows: $O_1$ is an arbitrary point (within the unit distance of at least one of the $n$ points); $O_2$ is the centre of gravity of all the $n$ given points that are inside the unit sphere centred at $O_1$;$O_3$ is the centre of gravity of all of the $n$ given points that are inside the unit sphere centred at $O_2$; etc. Prove that starting from some $m$, all points $O_m,O_{m+1},O_{m+2},\ldots$ coincide.
2009 Today's Calculation Of Integral, 402
Consider a right circular cylinder with radius $ r$ of the base, hight $ h$. Find the volume of the solid by revolving the cylinder about a diameter of the base.
1986 IMO Longlists, 12
Let $O$ be an interior point of a tetrahedron $A_1A_2A_3A_4$. Let $ S_1, S_2, S_3, S_4$ be spheres with centers $A_1,A_2,A_3,A_4$, respectively, and let $U, V$ be spheres with centers at $O$. Suppose that for $i, j = 1, 2, 3, 4, i \neq j$, the spheres $S_i$ and $S_j$ are tangent to each other at a point $B_{ij}$ lying on $A_iA_j$ . Suppose also that $U $ is tangent to all edges $A_iA_j$ and $V$ is tangent to the spheres $ S_1, S_2, S_3, S_4$. Prove that $A_1A_2A_3A_4$ is a regular tetrahedron.
2024 All-Russian Olympiad Regional Round, 11.8
3 segments $AA_1$, $BB_1$, $CC_1$ in space share a common midpoint $M$. Turns out, the sphere circumscribed about the tetrahedron $MA_1B_1C_1$ is tangent to plane $ABC$ at point $D$. Point $O$ is the circumcenter of triangle $ABC$. Prove that $MO = MD$.
1992 Flanders Math Olympiad, 3
a conic with apotheme 1 slides (varying height and radius, with $r < \frac12$) so that the conic's area is $9$ times that of its inscribed sphere. What's the height of that conic?
1989 Brazil National Olympiad, 5
A tetrahedron is such that the center of the its circumscribed sphere is inside the tetrahedron.
Show that at least one of its edges has a size larger than or equal to the size of the edge of a regular tetrahedron inscribed in this same sphere.
2012 Online Math Open Problems, 50
In tetrahedron $SABC$, the circumcircles of faces $SAB$, $SBC$, and $SCA$ each have radius $108$. The inscribed sphere of $SABC$, centered at $I$, has radius $35.$ Additionally, $SI = 125$. Let $R$ be the largest possible value of the circumradius of face $ABC$. Given that $R$ can be expressed in the form $\sqrt{\frac{m}{n}}$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.
[i]Author: Alex Zhu[/i]
Kyiv City MO 1984-93 - geometry, 1987.10.3
In a right circular cone with the radius of the base $R$ and the height $h$ are $n$ spheres of the same radius $r$ ($n \ge 3$). Each ball touches the base of the cone, its side surface and other two balls. Determine $r$.
2016 Saint Petersburg Mathematical Olympiad, 3
In a tetrahedron, the midpoints of all the edges lie on the same sphere. Prove that it's altitudes intersect at one point.
2006 VTRMC, Problem 7
Three spheres each of unit radius have centers $P,Q,R$ with the property that the center of each sphere lies on the surface of the other two spheres. Let $C$ denote the cylinder with cross-section $PQR$ (the triangular lamina with vertices $P,Q,R$) and axis perpendicular to $PQR$. Let $M$ denote the space which is common to the three spheres and the cylinder $C$, and suppose the mass density of $M$ at a given point is the distance of the point from $PQR$. Determine the mass of $M$.
2014 IPhOO, 15
The period of a given pendulum on a planet of radius $R$ is constant (unchanged) as we go from the surface of the planet down to radius $a$, where $R > a$. The planet has mass density evenly distributed at any radius $ r < a $. This density is $\rho_0$. Find the total mass of the planet. Express your answer in terms of $\rho_0$, $a$, $R$, the period of the pendulum, $T$, the length of the pendulum string, $L$, and other constants, as necessary.
[b]Warning[/b]: Your answer may contain some math. So be sure to input this correctly!
[i]Problem proposed by Trung Phan[/i]
2009 Tournament Of Towns, 4
Three planes dissect a parallelepiped into eight hexahedrons such that all of their faces are quadrilaterals (each plane intersects two corresponding pairs of opposite faces of the parallelepiped and does not intersect the remaining two faces). One of the hexahedrons has a circumscribed sphere. Prove that each of these hexahedrons has a circumscribed sphere.
1995 IMO Shortlist, 6
Let $ A_1A_2A_3A_4$ be a tetrahedron, $ G$ its centroid, and $ A'_1, A'_2, A'_3,$ and $ A'_4$ the points where the circumsphere of $ A_1A_2A_3A_4$ intersects $ GA_1,GA_2,GA_3,$ and $ GA_4,$ respectively. Prove that
\[ GA_1 \cdot GA_2 \cdot GA_3 \cdot GA_ \cdot4 \leq GA'_1 \cdot GA'_2 \cdot GA'_3 \cdot GA'_4\]
and
\[ \frac{1}{GA'_1} \plus{} \frac{1}{GA'_2} \plus{} \frac{1}{GA'_3} \plus{} \frac{1}{GA'_4} \leq \frac{1}{GA_1} \plus{} \frac{1}{GA_2} \plus{} \frac{1}{GA_3} \plus{} \frac{1}{GA_4}.\]
1994 All-Russian Olympiad Regional Round, 11.7
Points $A_1$, $B_1$ and $C_1$ are taken on the respective edges $SA$, $SB$, $SC$ of a regular triangular pyramid $SABC$ so that the planes $A_1B_1C_1$ and $ABC$ are parallel. Let $O$ be the center of the sphere passing through $A$, $B$, $C_1$ and $S$. Prove that the line $SO$ is perpendicular to the plane $A_1B_1C$.
1992 Polish MO Finals, 2
The base of a regular pyramid is a regular $2n$-gon $A_1A_2...A_{2n}$. A sphere passing through the top vertex $S$ of the pyramid cuts the edge $SA_i$ at $B_i$ (for $i = 1, 2, ... , 2n$). Show that $\sum\limits_{i=1}^n SB_{2i-1} = \sum\limits_{i=1}^n SB_{2i}$.
2003 Iran MO (3rd Round), 12
There is a lamp in space.(Consider lamp a point)
Do there exist finite number of equal sphers in space that the light of the lamp can not go to the infinite?(If a ray crash in a sphere it stops)