This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

1946 Putnam, B3

In a solid sphere of radius $R$ the density $\rho$ is a function of $r$, the distance from the center of the sphere. If the magnitude of the gravitational force of attraction due to the sphere at any point inside the sphere is $k r^2$, where $k$ is a constant, find $\rho$ as a function of $r.$ Find also the magnitude of the force of attraction at a point outside the sphere at a distance $r$ from the center.

1965 Miklós Schweitzer, 7

Prove that any uncountable subset of the Euclidean $ n$-space contains an countable subset with the property that the distances between different pairs of points are different (that is, for any points $ P_1 \not\equal{} P_2$ and $ Q_1\not\equal{} Q_2$ of this subset, $ \overline{P_1P_2}\equal{}\overline{Q_1Q_2}$ implies either $ P_1\equal{}Q_1$ and $ P_2\equal{}Q_2$, or $ P_1\equal{}Q_2$ and $ P_2\equal{}Q_1$). Show that a similar statement is not valid if the Euclidean $ n$-space is replaced with a (separable) Hilbert space.

2013 All-Russian Olympiad, 2

The inscribed and exscribed sphere of a triangular pyramid $ABCD$ touch her face $BCD$ at different points $X$ and $Y$. Prove that the triangle $AXY$ is obtuse triangle.

2011 Spain Mathematical Olympiad, 3

Let $A$, $B$, $C$, $D$ be four points in space not all lying on the same plane. The segments $AB$, $BC$, $CD$, and $DA$ are tangent to the same sphere. Prove that their four points of tangency are coplanar.

2021 Yasinsky Geometry Olympiad, 6

Three lines were drawn through the point $X$ in space. These lines crossed some sphere at six points. It turned out that the distances from point $X$ to some five of them are equal to $2$ cm, $3$ cm, $4$ cm, $5$ cm, $6$ cm. What can be the distance from point $X$ to the sixth point? (Alexey Panasenko)

2008 Sharygin Geometry Olympiad, 23

(V.Protasov, 10--11) In the space, given two intersecting spheres of different radii and a point $ A$ belonging to both spheres. Prove that there is a point $ B$ in the space with the following property: if an arbitrary circle passes through points $ A$ and $ B$ then the second points of its meet with the given spheres are equidistant from $ B$.

1955 Czech and Slovak Olympiad III A, 2

Let $\mathsf{S}_1,\mathsf{S}_2$ be concentric spheres with radii $a,b$ respectively, where $a<b.$ Denote $ABCDA'B'C'D'$ a square cuboid ($ABCD,A'B'C'D$ are the squares and $AA'\parallel BB'\parallel CC'\parallel DD'$) such that $A,B,C,D\in\mathsf{S}_2$ and the plane $A'B'C'D'$ is tangent to $\mathsf{S}_1.$ Finally assume that \[\frac{AB}{AA'}=\frac ab.\] Compute the lengths $AB,AA'.$ How many of such cuboids exist (up to a congruence)?

2015 Sharygin Geometry Olympiad, 7

Let $SABCD$ be an inscribed pyramid, and $AA_1$, $BB_1$, $CC_1$, $DD_1$ be the perpendiculars from $A$, $B$, $C$, $D$ to lines $SC$, $SD$, $SA$, $SB$ respectively. Points $S$, $A_1$, $B_1$, $C_1$, $D_1$ are distinct and lie on a sphere. Prove that points $A_1$, $B_1$, $C_1$ and $D_1$ are coplanar.

Denmark (Mohr) - geometry, 1994.1

A wine glass with a cross section as shown has the property of an orange in shape as a sphere with a radius of $3$ cm just can be placed in the glass without protruding above glass. Determine the height $h$ of the glass. [img]https://1.bp.blogspot.com/-IuLm_IPTvTs/XzcH4FAjq5I/AAAAAAAAMYY/qMi4ng91us8XsFUtnwS-hb6PqLwAON_jwCLcBGAsYHQ/s0/1994%2BMohr%2Bp1.png[/img]

1985 IMO Shortlist, 9

Determine the radius of a sphere $S$ that passes through the centroids of each face of a given tetrahedron $T$ inscribed in a unit sphere with center $O$. Also, determine the distance from $O$ to the center of $S$ as a function of the edges of $T.$

2005 iTest, 12

A sphere sits inside a cubic box, tangent on all $6$ sides of the box. If a side of the box is $5$, and the volume of the sphere is $x\pi$ , find $x$.

1996 ITAMO, 3

Given a cube of unit side. Let $A$ and $B$ be two opposite vertex. Determine the radius of the sphere, with center inside the cube, tangent to the three faces of the cube with common point $A$ and tangent to the three sides with common point $B$.

1979 Romania Team Selection Tests, 4.

Let $A_1A_2A_3A_4$ be a tetrahedron. Consider the sphere centered at $A_1$ which is tangent to the face $A_2A_3A_4$ of the tetrahedron. Show that the surface area of the part of the sphere which is inside the tetrahedron is less than the area of the triangle $A_2A_3A_4$. [i]Sorin Rădulescu[/i]

1996 Denmark MO - Mohr Contest, 3

This year's gift idea from BabyMath consists of a series of nine colored plastic containers of decreasing size, alternating in shape like a cube and a sphere. All containers can open and close with a convenient hinge, and each container can hold just about anything next in line. The largest and smallest container are both cubes. Determine the relationship between the edge lengths of these cubes.

1979 Miklós Schweitzer, 7

Let $ T$ be a triangulation of an $ n$-dimensional sphere, and to each vertex of $ T$ let us assign a nonzero vector of a linear space $ V$. Show that if $ T$ has an $ n$-dimensional simplex such that the vectors assigned to the vertices of this simplex are linearly independent, then another such simplex must also exist. [i]L. Lovasz[/i]

2011 Purple Comet Problems, 30

Four congruent spheres are stacked so that each is tangent to the other three. A larger sphere, $R$, contains the four congruent spheres so that all four are internally tangent to $R$. A smaller sphere, $S$, sits in the space between the four congruent spheres so that all four are externally tangent to $S$. The ratio of the surface area of $R$ to the surface area of $S$ can be written $m+\sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$.

Today's calculation of integrals, 768

Let $r$ be a real such that $0<r\leq 1$. Denote by $V(r)$ the volume of the solid formed by all points of $(x,\ y,\ z)$ satisfying \[x^2+y^2+z^2\leq 1,\ x^2+y^2\leq r^2\] in $xyz$-space. (1) Find $V(r)$. (2) Find $\lim_{r\rightarrow 1-0} \frac{V(1)-V(r)}{(1-r)^{\frac 32}}.$ (3) Find $\lim_{r\rightarrow +0} \frac{V(r)}{r^2}.$

1956 Putnam, B3

A sphere is inscribed in a tetrahedron and each point of contact of the sphere with the four faces is joined to the vertices of the face containing the point. Show that the four sets of three angles so formed are identical.

1967 IMO Longlists, 36

Prove this proposition: Center the sphere circumscribed around a tetrahedron which coincides with the center of a sphere inscribed in that tetrahedron if and only if the skew edges of the tetrahedron are equal.

2014 Contests, 3

A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square? [i]Proposed by Evan Chen[/i]

1974 IMO Longlists, 44

We are given $n$ mass points of equal mass in space. We define a sequence of points $O_1,O_2,O_3,\ldots $ as follows: $O_1$ is an arbitrary point (within the unit distance of at least one of the $n$ points); $O_2$ is the centre of gravity of all the $n$ given points that are inside the unit sphere centred at $O_1$;$O_3$ is the centre of gravity of all of the $n$ given points that are inside the unit sphere centred at $O_2$; etc. Prove that starting from some $m$, all points $O_m,O_{m+1},O_{m+2},\ldots$ coincide.

2000 AIME Problems, 12

The points $A, B$ and $C$ lie on the surface of a sphere with center $O$ and radius 20. It is given that $AB=13, BC=14, CA=15,$ and that the distance from $O$ to triangle $ABC$ is $\frac{m\sqrt{n}}k,$ where $m, n,$ and $k$ are positive integers, $m$ and $k$ are relatively prime, and $n$ is not divisible by the square of any prime. Find $m+n+k.$

1997 Tournament Of Towns, (539) 4

All edges of a tetrahedron $ABCD$ are equal. The tetrahedron $ABCD$ is inscribed in a sphere. $CC'$ and $DD'$ are diameters. Find the angle between the planes $ABC$' and $ACD'$. (A Zaslavskiy)

2014 NIMO Problems, 3

A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square? [i]Proposed by Evan Chen[/i]

2008 ITest, 89

Two perpendicular planes intersect a sphere in two circles. These circles intersect in two points, $A$ and $B$, such that $AB=42$. If the radii of the two circles are $54$ and $66$, find $R^2$, where $R$ is the radius of the sphere.