This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 594

1987 All Soviet Union Mathematical Olympiad, 453

Each field of the $1987\times 1987$ board is filled with numbers, which absolute value is not greater than one. The sum of all the numbers in every $2\times 2$ square equals $0$. Prove that the sum of all the numbers is not greater than $1987$.

2020 Paraguay Mathematical Olympiad, 5

Tags: algebra , sequence , sum
The general term of a sequence of numbers is defined as $a_n =\frac{1}{n^2 - n}$, for every integer $n \ge 3$. That is, $a_3 =\frac16$, $a_4 =\frac{1}{12}$, $a_5 =\frac{1}{20}$, and so on. Find a general expression for the sum $S_n$, which is the sum of all terms from $a_3$ until $a_n$.

2017 Dutch Mathematical Olympiad, 4

If we divide the number $13$ by the three numbers $5, 7$, and $9$, then these divisions leave remainders: when dividing by $5$ the remainder is $3$, when dividing by $7$ the remainder is $6$, and when dividing by $9$ the remainder is 4. If we add these remainders, we obtain $3 + 6 + 4 = 13$, the original number. (a) Let $n$ be a positive integer and let $a$ and $b$ be two positive integers smaller than $n$. Prove: if you divide $n$ by $a$ and $b$, then the sum of the two remainders never equals $n$. (b) Determine all integers $n > 229$ having the property that if you divide $n$ by $99, 132$, and $229$, the sum of the three remainders is $n$.

1998 German National Olympiad, 5

A sequence ($a_n$) is given by $a_0 = 0, a_1 = 1$ and $a_{k+2} = a_{k+1} +a_k$ for all integers $k \ge 0$. Prove that the inequality $\sum_{k=0}^n \frac{a_k}{2^k}< 2$ holds for all positive integers $n$.

2020 Malaysia IMONST 1, 6

Tags: square root , sum
Find the sum of all integers between $-\sqrt {1442}$ and $\sqrt{2020}$.

1986 Dutch Mathematical Olympiad, 2

Tags: sum , algebra
Prove that for all positive integers $n$ holds that $$\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+...+\frac{1}{(2n-1) \cdot 2n}=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}$$

1977 Bundeswettbewerb Mathematik, 2

A beetle crawls along the edges of an $n$-lateral pyramid, starting and ending at the midpoint $A$ of a base edge and passing through each point at most once. How many ways are there for the beetle to do this (two ways are said to be equal if they go through the same vertices)? Show that the sum of the numbers of passed vertices (over all these ways) equals $1^2 +2^2 +\ldots +n^2. $

2019 Nigerian Senior MO Round 3, 3

Show that $$5^{2019} \mid \Sigma^{5^{2019}}_{k=1}3^{gcd (5^{2019},k)}$$

2013 IMAC Arhimede, 6

Let $p$ be an odd positive integer. Find all values of the natural numbers $n\ge 2$ for which holds $$\sum_{i=1}^{n} \prod_{j\ne i} (x_i-x_j)^p\ge 0$$ where $x_1,x_2,..,x_n$ are any real numbers.

2005 Thailand Mathematical Olympiad, 7

Tags: sum , combinatorics
How many ways are there to express $2548$ as a sum of at least two positive integers, where two sums that differ in order are considered different?

2011 Belarus Team Selection Test, 1

Let $g(n)$ be the number of all $n$-digit natural numbers each consisting only of digits $0,1,2,3$ (but not nessesarily all of them) such that the sum of no two neighbouring digits equals $2$. Determine whether $g(2010)$ and $g(2011)$ are divisible by $11$. I.Kozlov

2013 Tournament of Towns, 6

Tags: product , sum , algebra
There are fi ve distinct real positive numbers. It is known that the total sum of their squares and the total sum of their pairwise products are equal. (a) Prove that we can choose three numbers such that it would not be possible to make a triangle with sides' lengths equal to these numbers. (b) Prove that the number of such triples is at least six (triples which consist of the same numbers in different order are considered the same).

2018 Bundeswettbewerb Mathematik, 2

Consider all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying $f(1-f(x))=x$ for all $x \in \mathbb{R}$. a) By giving a concrete example, show that such a function exists. b) For each such function define the sum \[S_f=f(-2017)+f(-2016)+\dots+f(-1)+f(0)+f(1)+\dots+f(2017)+f(2018).\] Determine all possible values of $S_f$.

1993 Abels Math Contest (Norwegian MO), 4

Each of the $8$ vertices of a given cube is given a value $1$ or $-1$. Each of the $6$ faces is given the value of product of its four vertices. Let $A$ be the sum of all the $14$ values. Which are the possible values of $A$?

2006 MOP Homework, 5

Let $a_1, a_2,...,a_{2005}, b_1, b_2,...,b_{2005}$ be real numbers such that $(a_ix - b_i)^2 \ge \sum_{j\ne i,j=1}^{2005} (a_jx - b_j)$ for all real numbers x and every integer $i$ with $1 \le i \le 2005$. What is maximal number of positive $a_i$'s and $b_i$'s?

2019 Saint Petersburg Mathematical Olympiad, 4

Olya wrote fractions of the form $1 / n$ on cards, where $n$ is all possible divisors the numbers $6^{100}$ (including the unit and the number itself). These cards she laid out in some order. After that, she wrote down the number on the first card, then the sum of the numbers on the first and second cards, then the sum of the numbers on the first three cards, etc., finally, the sum of the numbers on all the cards. Every amount Olya recorded on the board in the form of irreducible fraction. What is the least different denominators could be on the numbers on the board?

2019 Durer Math Competition Finals, 15

The positive integer $m$ and non-negative integers $x_0, x_1,..., x_{1001}$ satisfy the following equation: $$m^{x_0} =\sum_{i=1}^{1001}m^{x_i}.$$ How many possibilities are there for the value of $m$?

2002 Spain Mathematical Olympiad, Problem 4

Tags: sum , number theory
Denote $n$ as a natural number, and $m$ as the result of writing the digits of $n$ in reverse order. Determine, if they exist, the numbers of three digits which satisfy $2m + S = n$, $S$ being the sum of the digits of $n$.

1997 Abels Math Contest (Norwegian MO), 2a

Let $P$ be an interior point of an equilateral triangle $ABC$, and let $Q,R,S$ be the feet of perpendiculars from $P$ to $AB,BC,CA$, respectively. Show that the sum $PQ+PR+PS$ is independent of the choice of $P$.

2002 India IMO Training Camp, 16

Is it possible to find $100$ positive integers not exceeding $25,000$, such that all pairwise sums of them are different?

2014 IMAC Arhimede, 4

Let $n$ be a natural number and let $P (t) = 1 + t + t^2 + ... + t^{2n}$. If $x \in R$ such that $P (x)$ and $P (x^2)$ are rational numbers, prove that $x$ is rational number.

2013 India PRMO, 3

Tags: algebra , sum , integer
It is given that the equation $x^2 + ax + 20 = 0$ has integer roots. What is the sum of all possible values of $a$?

1984 Polish MO Finals, 4

A coin is tossed $n$ times, and the outcome is written in the form ($a_1,a_2,...,a_n$), where $a_i = 1$ or $2$ depending on whether the result of the $i$-th toss is the head or the tail, respectively. Set $b_j = a_1 +a_2 +...+a_j$ for $j = 1,2,...,n$, and let $p(n)$ be the probability that the sequence $b_1,b_2,...,b_n$ contains the number $n$. Express $p(n)$ in terms of $p(n-1)$ and $p(n-2)$.

2018 Estonia Team Selection Test, 3

Tags: sum , min , max , algebra , inequalities
Given a real number $c$ and an integer $m, m \ge 2$. Real numbers $x_1, x_2,... , x_m$ satisfy the conditions $x_1 + x_2 +...+ x_m = 0$ and $\frac{x^2_1 + x^2_2 + ...+ x^2_m}{m}= c$. Find max $(x_1, x_2,..., x_m)$ if it is known to be as small as possible.

2011 Indonesia TST, 1

For all positive integer $n$, define $f_n(x)$ such that $f_n(x) = \sum_{k=1}^n{|x - k|}$. Determine all solution from the inequality $f_n(x) < 41$ for all positive $2$-digit integers $n$ (in decimal notation).