This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 594

1978 Swedish Mathematical Competition, 2

Let $s_m$ be the number $66\cdots 6$ with $m$ digits $6$. Find \[ s_1 + s_2 + \cdots + s_n \]

1954 Moscow Mathematical Olympiad, 281

*. Positive numbers $x_1, x_2, ..., x_{100}$ satisfy the system $$\begin{cases} x^2_1+ x^2_2+ ... + x^2_{100} > 10 000 \\ x_1 + x_2 + ...+ x_{100} < 300 \end{cases}$$ Prove that among these numbers there are three whose sum is greater than $100$.

1971 Spain Mathematical Olympiad, 1

Tags: algebra , sum
Calculate $$\sum_{k=5}^{k=49}\frac{11_(k}{2\sqrt[3]{1331_(k}}$$ knowing that the numbers $11$ and $1331$ are written in base $k \ge 4$.

1986 All Soviet Union Mathematical Olympiad, 429

A cube with edge of length $n$ ($n\ge 3$) consists of $n^3$ unit cubes. Prove that it is possible to write different $n^3$ integers on all the unit cubes to provide the zero sum of all integers in the every row parallel to some edge.

2000 Switzerland Team Selection Test, 2

Tags: sum , max , algebra , inequalities
Real numbers $a_1,a_2,...,a_{16}$ satisfy the conditions $\sum_{i=1}^{16}a_i = 100$ and $\sum_{i=1}^{16}a_i^2 = 1000$ . What is the greatest possible value of $a_16$?

2002 India IMO Training Camp, 16

Is it possible to find $100$ positive integers not exceeding $25,000$, such that all pairwise sums of them are different?

1997 Greece Junior Math Olympiad, 4

Consider ten concentric circles and ten rays as in the following figure. At the points where the inner circle is intersected by the rays write successively, in direction clockwise, the numbers $1, 2, 3, 4, 5, 6, 7, 8, 9, 10$. In the next circle we write the numbers $11, 12, 13, 14, 15, 16, 17, 18, 19,20$ successively, and so on successively until the last round were we write the numbers $91, 92, 93, 94, 95, 96, 97, 98, 99, 100$ successively. In this orde, the numbers $1, 11, 21, 31, 41, 51, 61, 71, 81, 91$ are in the same ray, and similarly for the other rays. In front of $50$ of those $100$ numbers, we use the sign ''$-$'' such as: a) in each of the ten rays, exist exactly $5$ signs ''$-$'' , and also b) in each of the ten concentric circles, to be exactly $5$ signs ''$-$''. Prove that the sum of the $100$ signed numbers that occur, equals zero. [img]https://cdn.artofproblemsolving.com/attachments/9/d/ffee6518fcd1b996c31cf06d0ce484a821b4ae.gif[/img]

2014 Junior Balkan Team Selection Tests - Moldova, 1

Prove that $$\frac{2 }{2013 +1} +\frac{2^{2}}{2013^{2^{1}}+1} +\frac{2^{3}}{2013^{2^{2}}+1} + ...+ \frac{2^{2014}}{2013^{2^{2013}}+1} < \frac{1}{1006}$$

1991 Tournament Of Towns, (302) 3

Tags: sum , algebra
Prove that $$\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4+\dfrac{1}{...+\dfrac{1}{9991}}}}}+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{4+\dfrac{1}{...+\dfrac{1}{9991}}}}}}=1$$ This means $1/(2+ (1/(3+ (1/(4+(...+1/1991)))))) +1/(1 + (1/(1 + (1/(3 + (1/(4 + (...+ 1/1991...)))))))) = 1.)$ (G. Galperin, Moscow-Tel Aviv)

1999 North Macedonia National Olympiad, 1

In a set of $21$ real numbers, the sum of any $10$ numbers is less than the sum of the remaining $11$ numbers. Prove that all the numbers are positive.

1998 ITAMO, 1

Tags: algebra , sum , radical
Calculate the sum $\sum_{n=1}^{1.000.000}[ \sqrt{n} ]$ . You may use the formula $\sum_{i=1}^{k} i^2=\frac{k(k +1)(2k +1)}{6}$ without a proof.

2009 Postal Coaching, 3

Let $N_0$ denote the set of nonnegative integers and $Z$ the set of all integers. Let a function $f : N_0 \times Z \to Z$ satisfy the conditions (i) $f(0, 0) = 1$, $f(0, 1) = 1$ (ii) for all $k, k \ne 0, k \ne 1$, $f(0, k) = 0$ and (iii) for all $n \ge 1$ and $k, f(n, k) = f(n -1, k) + f(n- 1, k - 2n)$. Find the value of $$\sum_{k=0}^{2009 \choose 2} f(2008, k)$$

2016 Dutch IMO TST, 2

For distinct real numbers $a_1,a_2,...,a_n$, we calculate the $\frac{n(n-1)}{2}$ sums $a_i +a_j$ with $1 \le i < j \le n$, and sort them in ascending order. Find all integers $n \ge 3$ for which there exist $a_1,a_2,...,a_n$, for which this sequence of $\frac{n(n-1)}{2}$ sums form an arithmetic progression (i.e. the di erence between consecutive terms is constant).

2001 Switzerland Team Selection Test, 5

Let $a_1 < a_2 < ... < a_n$ be a sequence of natural numbers such that for $i < j$ the decimal representation of $a_i$ does not occur as the leftmost digits of the decimal representation of $a_j$ . (For example, $137$ and $13729$ cannot both occur in the sequence.) Prove that $\sum_{i=1}^n \frac{1}{a_i} \le 1+\frac12 +\frac13 +...+\frac19$ .

1982 Tournament Of Towns, (027) 1

Prove that for all natural numbers $n$ greater than $1$ : $$[\sqrt{n}] + [\sqrt[3]{n}] +...+[ \sqrt[n]{n}] = [\log_2 n] + [\log_3 n] + ... + [\log_n n]$$ (VV Kisil)

2000 Switzerland Team Selection Test, 4

Let $q(n)$ denote the sum of the digits of a natural number $n$. Determine $q(q(q(2000^{2000})))$.

2009 BAMO, 2

Tags: fibonacci , sum
The Fibonacci sequence is the list of numbers that begins $1, 2, 3, 5, 8, 13$ and continues with each subsequent number being the sum of the previous two. Prove that for every positive integer $n$ when the first $n$ elements of the Fibonacci sequence are alternately added and subtracted, the result is an element of the sequence or the negative of an element of the sequence. For example, when $n = 4$ we have $1-2+3-5 = -3$ and $3$ is an element of the Fibonacci sequence.

2020 Nordic, 3

Each of the sides $AB$ and $CD$ of a convex quadrilateral $ABCD$ is divided into three equal parts, $|AE| = |EF| = |F B|$ , $|DP| = |P Q| = |QC|$. The diagonals of $AEPD$ and $FBCQ$ intersect at $M$ and $N$, respectively. Prove that the sum of the areas of $\vartriangle AMD$ and $\vartriangle BNC$ is equal to the sum of the areas of $\vartriangle EPM$ and $\vartriangle FNQ$.

1955 Moscow Mathematical Olympiad, 294

a) A square table with $49$ small squares is filled with numbers $1$ to $7$ so that in each row and in each column all numbers from $1$ to $7$ are present. Let the table be symmetric through the main diagonal. Prove that on this diagonal all the numbers $1, 2, 3, . . . , 7$ are present. b) A square table with $n^2$ small squares is filled with numbers $1$ to $n$ so that in each row and in each column all numbers from $1$ to $n$ are present. Let $n$ be odd and the table be symmetric through the main diagonal. Prove that on this diagonal all the numbers $1, 2, 3, . . . , n$ are present.

1990 Mexico National Olympiad, 4

Tags: sum , algebra
Find $0/1 + 1/1 + 0/2 + 1/2 + 2/2 + 0/3 + 1/3 + 2/3 + 3/3 + 0/4 + 1/4 + 2/4 + 3/4 + 4/4 + 0/5 + 1/5 + 2/5 + 3/5 + 4/5 + 5/5 + 0/6 + 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6$

1983 Tournament Of Towns, (050) 2

Consider all nine-digit numbers, consisting of non-repeating digits from $1$ to $9$ in an arbitrary order. A pair of such numbers is called “conditional” if their sum is equal to $987654321$. (a) Prove that there exist at least two conditional pairs (noting that ($a,b$) and ($b,a$) is considered to be one pair). (b) Prove that the number of conditional pairs is odd. (G Galperin, Moscow)

2018 Flanders Math Olympiad, 3

Write down $f(n)$ for the greatest odd divisor of $n \in N_0$. (a) Determine $f (n + 1) + f (n + 2) + ... + f(2n)$. (b) Determine $f(1) + f(2) + f(3) + ... + f(2n)$.

1986 All Soviet Union Mathematical Olympiad, 440

Consider all the tetrahedrons $AXBY$, circumscribed around the sphere. Let $A$ and $B$ points be fixed. Prove that the sum of angles in the non-plane quadrangle $AXBY$ doesn't depend on points $X$ and $Y$ .

2000 Switzerland Team Selection Test, 6

Positive real numbers $x,y,z$ have the sum $1$. Prove that $\sqrt{7x+3}+ \sqrt{7y+3}+\sqrt{7z+3} \le 7$. Can number $7$ on the right hand side be replaced with a smaller constant?

1976 Spain Mathematical Olympiad, 2

Tags: sum , vector , algebra
Consider the set $C$ of all $r$ -tuple whose components are $1$ or $-1$. Calculate the sum of all the components of all the elements of $C$ excluding the $ r$ -tuple $(1, 1, 1, . . . , 1)$.