Found problems: 701
1982 IMO Shortlist, 8
A convex, closed figure lies inside a given circle. The figure is seen from every point of the circumference at a right angle (that is, the two rays drawn from the point and supporting the convex figure are perpendicular). Prove that the center of the circle is a center of symmetry of the figure.
2005 District Olympiad, 2
Let $ABC$ be a triangle inscribed in a circle of center $O$ and radius $R$. Let $I$ be the incenter of $ABC$, and let $r$ be the inradius of the same triangle, $O\neq I$, and let $G$ be its centroid. Prove that $IG\perp BC$ if and only if $b=c$ or $b+c=3a$.
2014 NIMO Problems, 8
Define the function $\xi : \mathbb Z^2 \to \mathbb Z$ by $\xi(n,k) = 1$ when $n \le k$ and $\xi(n,k) = -1$ when $n > k$, and construct the polynomial \[ P(x_1, \dots, x_{1000}) = \prod_{n=1}^{1000} \left( \sum_{k=1}^{1000} \xi(n,k)x_k \right). \]
(a) Determine the coefficient of $x_1x_2 \dots x_{1000}$ in $P$.
(b) Show that if $x_1, x_2, \dots, x_{1000} \in \left\{ -1,1 \right\}$ then $P(x_1,x_2,\dots,x_{1000}) = 0$.
[i]Proposed by Evan Chen[/i]
2010 Princeton University Math Competition, 4
Erick stands in the square in the 2nd row and 2nd column of a 5 by 5 chessboard. There are \$1 bills in the top left and bottom right squares, and there are \$5 bills in the top right and bottom left squares, as shown below.
\[\begin{tabular}{|p{1em}|p{1em}|p{1em}|p{1em}|p{1em}|}
\hline
\$1 & & & & \$5 \\
\hline
& E & & &\\
\hline
& & & &\\
\hline
& & & &\\
\hline
\$5 & & & & \$1 \\
\hline \end{tabular}\]
Every second, Erick randomly chooses a square adjacent to the one he currently stands in (that is, a square sharing an edge with the one he currently stands in) and moves to that square. When Erick reaches a square with money on it, he takes it and quits. The expected value of Erick's winnings in dollars is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
1995 IberoAmerican, 1
In a $m\times{n}$ grid are there are token. Every token [i]dominates [/i] every square on its same row ($\leftrightarrow$), its same column ($\updownarrow$), and diagonal ($\searrow\hspace{-4.45mm}\nwarrow$)(Note that the token does not \emph{dominate} the diagonal ($\nearrow\hspace{-4.45mm}\swarrow$), determine the lowest number of tokens that must be on the board to [i]dominate [/i] all the squares on the board.
1994 AIME Problems, 6
The graphs of the equations \[ y=k, \qquad y=\sqrt{3}x+2k, \qquad y=-\sqrt{3}x+2k, \] are drawn in the coordinate plane for $k=-10,-9,-8,\ldots,9,10.$ These 63 lines cut part of the plane into equilateral triangles of side $2/\sqrt{3}.$ How many such triangles are formed?
1996 Vietnam Team Selection Test, 1
Given 3 non-collinear points $A,B,C$. For each point $M$ in the plane ($ABC$) let $M_1$ be the point symmetric to $M$ with respect to $AB$, $M_2$ be the point symmetric to $M_1$ with respect to $BC$ and $M'$ be the point symmetric to $M_2$ with respect to $AC$. Find all points $M$ such that $MM'$ obtains its minimum. Let this minimum value be $d$. Prove that $d$ does not depend on the order of the axes of symmetry we chose (we have 3 available axes, that is $BC$, $CA$, $AB$. In the first part the order of axes we chose $AB$, $BC$, $CA$, and the second part of the problem states that the value $d$ doesn't depend on this order).
2010 Korea - Final Round, 5
On a circular table are sitting $ 2n$ people, equally spaced in between. $ m$ cookies are given to these people, and they give cookies to their neighbors according to the following rule.
(i) One may give cookies only to people adjacent to himself.
(ii) In order to give a cookie to one's neighbor, one must eat a cookie.
Select arbitrarily a person $ A$ sitting on the table. Find the minimum value $ m$ such that there is a strategy in which $ A$ can eventually receive a cookie, independent of the distribution of cookies at the beginning.
2011 Turkey Team Selection Test, 2
Let $I$ be the incenter and $AD$ be a diameter of the circumcircle of a triangle $ABC.$ If the point $E$ on the ray $BA$ and the point $F$ on the ray $CA$ satisfy the condition
\[BE=CF=\frac{AB+BC+CA}{2}\]
show that the lines $EF$ and $DI$ are perpendicular.
2005 USAMTS Problems, 5
Given acute triangle $\triangle ABC$ in plane $P$, a point $Q$ in space is defined such that $\angle AQB = \angle BQC = \angle CQA = 90^\circ.$ Point $X$ is the point in plane $P$ such that $QX$ is perpendicular to plane $P$. Given $\angle ABC = 40^\circ$ and $\angle ACB = 75^\circ,$ find $\angle AXC.$
1993 All-Russian Olympiad, 2
Is it true that any two rectangles of equal area can be placed in the plane such that any horizontal line intersecting at least one of them will also intersect the other, and the segments of intersection will be equal?
2010 Tuymaada Olympiad, 3
Let $ABC$ be a triangle, $I$ its incenter, $\omega$ its incircle, $P$ a point such that $PI\perp BC$ and $PA\parallel BC$, $Q\in (AB), R\in (AC)$ such that $QR\parallel BC$ and $QR$ tangent to $\omega$.
Show that $\angle QPB = \angle CPR$.
2002 All-Russian Olympiad Regional Round, 9.6
Let $A'$ be a point on one of the sides of the trapezoid $ABCD$ such that line $AA'$ divides the area of the trapezoid in half. Points $B'$, $C'$, $D'$ are defined similarly. Prove that the intersection points of the diagonals of quadrilaterals $ABCD$ and $A'B'C'D'$ are symmetrical wrt the midpoint of midline of trapezoid $ABCD$.
1960 Czech and Slovak Olympiad III A, 2
Consider a cube $ABCDA'B'C'D'$ (where $ABCD$ is a square and $AA' \parallel BB' \parallel CC' \parallel DD'$) and a point $P$ on the line $AA'$. Construct center $S$ of a sphere which has plane $ABB'$ as a plane of symmetry, $P$ lies on the sphere and $p = AB$, $q = A'D'$ are its tangent lines. Discuss conditions of solvability with respect to different position of the point $P$ (on line $AA'$).
2012 National Olympiad First Round, 22
How many integer pairs $(m,n)$ are there satisfying $4mn(m+n-1)=(m^2+1)(n^2+1)$?
$ \textbf{(A)}\ 5 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 1$
2012 AMC 12/AHSME, 8
A dessert chef prepares the dessert for every day of a week starting with Sunday. The dessert each day is either cake, pie, ice cream, or pudding. The same dessert may not be served two days in a row. There must be cake on Friday because of a birthday. How many different dessert menus for the week are possible?
$ \textbf{(A)}\ 729\qquad\textbf{(B)}\ 972\qquad\textbf{(C)}\ 1024\qquad\textbf{(D)}\ 2187\qquad\textbf{(E)}\ 2304 $
2012 Morocco TST, 4
Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.
[i]Proposed by Ismail Isaev and Mikhail Isaev, Russia[/i]
2019 Germany Team Selection Test, 2
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
1993 Poland - First Round, 4
Given is a circle with center $O$, point $A$ inside the circle and a chord $PQ$ which is not a diameter and passing through $A$. The lines $p$ and $q$ are tangent to the given circle at $P$ and $Q$ respectively. The line $l$ passing through $A$ and perpendicular to $OA$ intersects the lines $p$ and $q$ at $K$ and $L$ respectively. Prove that $|AK| = |AL|$.
2008 Turkey MO (2nd round), 2
A circle $ \Gamma$ and a line $ \ell$ is given in a plane such that $ \ell$ doesn't cut $ \Gamma$.Determine the intersection set of the circles has $ [AB]$ as diameter for all pairs of $ \left\{A,B\right\}$ (lie on $ \ell$) and satisfy $ P,Q,R,S \in \Gamma$ such that $ PQ \cap RS\equal{}\left\{A\right\}$ and $ PS \cap QR\equal{}\left\{B\right\}$
2014 Taiwan TST Round 2, 1
Let $\omega$ be the circumcircle of a triangle $ABC$. Denote by $M$ and $N$ the midpoints of the sides $AB$ and $AC$, respectively, and denote by $T$ the midpoint of the arc $BC$ of $\omega$ not containing $A$. The circumcircles of the triangles $AMT$ and $ANT$ intersect the perpendicular bisectors of $AC$ and $AB$ at points $X$ and $Y$, respectively; assume that $X$ and $Y$ lie inside the triangle $ABC$. The lines $MN$ and $XY$ intersect at $K$. Prove that $KA=KT$.
2009 Balkan MO, 3
A $ 9 \times 12$ rectangle is partitioned into unit squares. The centers of all the unit squares, except for the four corner squares and eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres $ C_1,C_2,\ldots ,C_{96}$ in such way that the following to conditions are both fulfilled
i) the distances $C_1C_2,\ldots ,C_{95}C_{96}, C_{96}C_{1}$ are all equal to $ \sqrt {13}$,
ii) the closed broken line $ C_1C_2\ldots C_{96}C_1$ has a centre of symmetry?
[i]Bulgaria[/i]
2010 Slovenia National Olympiad, 5
Let $ABC$ be an equilateral triangle with the side of $20$ units. Amir divides this triangle into $400$ smaller equilateral triangles with the sides of $1$ unit. Reza then picks $4$ of the vertices of these smaller triangles. The vertices lie inside the triangle $ABC$ and form a parallelogram with sides parallel to the sides of the triangle $ABC.$ There are exactly $46$ smaller triangles that have at least one point in common with the sides of this parallelogram. Find all possible values for the area of this parallelogram.
[asy]
unitsize(150);
defaultpen(linewidth(0.7));
int n = 20; /* # of vertical lines, including BC */
pair A = (0,0), B = dir(-30), C = dir(30);
draw(A--B--C--cycle,linewidth(1)); dot(A,UnFill(0)); dot(B,UnFill(0)); dot(C,UnFill(0));
label("$A$",A,W); label("$C$",C,NE); label("$B$",B,SE);
for(int i = 1; i < n; ++i) {
draw((i*A+(n-i)*B)/n--(i*A+(n-i)*C)/n);
draw((i*B+(n-i)*A)/n--(i*B+(n-i)*C)/n);
draw((i*C+(n-i)*A)/n--(i*C+(n-i)*B)/n);
}[/asy]
[Thanks azjps for drawing the diagram.]
[hide="Note"][i]Note:[/i] Vid changed to Amir, and Eva change to Reza![/hide]
2010 AMC 12/AHSME, 14
Let $ a$, $ b$, $ c$, $ d$, and $ e$ be positive integers with $ a\plus{}b\plus{}c\plus{}d\plus{}e\equal{}2010$, and let $ M$ be the largest of the sums $ a\plus{}b$, $ b\plus{}c$, $ c\plus{}d$, and $ d\plus{}e$. What is the smallest possible value of $ M$?
$ \textbf{(A)}\ 670 \qquad
\textbf{(B)}\ 671 \qquad
\textbf{(C)}\ 802 \qquad
\textbf{(D)}\ 803 \qquad
\textbf{(E)}\ 804$
2019 Taiwan TST Round 1, 1
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.