This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 701

2015 Saudi Arabia GMO TST, 3

Let $ABC$ be a triangle and $G$ its centroid. Let $G_a, G_b$ and $G_c$ be the orthogonal projections of $G$ on sides $BC, CA$, respectively $AB$. If $S_a, S_b$ and $S_c$ are the symmetrical points of $G_a, G_b$, respectively $G_c$ with respect to $G$, prove that $AS_a, BS_b$ and $CS_c$ are concurrent. Liana Topan

2007 CHKMO, 3

A convex quadrilateral $ABCD$ with $AC \neq BD$ is inscribed in a circle with center $O$. Let $E$ be the intersection of diagonals $AC$ and $BD$. If $P$ is a point inside $ABCD$ such that $\angle PAB+\angle PCB=\angle PBC+\angle PDC=90^\circ$, prove that $O$, $P$ and $E$ are collinear.

2006 Bulgaria Team Selection Test, 1

[b]Problem 1.[/b] Points $D$ and $E$ are chosen on the sides $AB$ and $AC$, respectively, of a triangle $\triangle ABC$ such that $DE\parallel BC$. The circumcircle $k$ of triangle $\triangle ADE$ intersects the lines $BE$ and $CD$ at the points $M$ and $N$ (different from $E$ and $D$). The lines $AM$ and $AN$ intersect the side $BC$ at points $P$ and $Q$ such that $BC=2\cdot PQ$ and the point $P$ lies between $B$ and $Q$. Prove that the circle $k$ passes through the point of intersection of the side $BC$ and the angle bisector of $\angle BAC$. [i]Nikolai Nikolov[/i]

2012 Romania Team Selection Test, 2

Let $ABCD$ be a convex circumscribed quadrilateral such that $\angle ABC+\angle ADC<180^{\circ}$ and $\angle ABD+\angle ACB=\angle ACD+\angle ADB$. Prove that one of the diagonals of quadrilateral $ABCD$ passes through the other diagonals midpoint.

2009 Iran MO (3rd Round), 2

2-There is given a trapezoid $ ABCD$.We have the following properties:$ AD\parallel{}BC,DA \equal{} DB \equal{} DC,\angle BCD \equal{} 72^\circ$. A point $ K$ is taken on $ BD$ such that $ AD \equal{} AK,K \neq D$.Let $ M$ be the midpoint of $ CD$.$ AM$ intersects $ BD$ at $ N$.PROVE $ BK \equal{} ND$.

2006 Bulgaria Team Selection Test, 1

[b]Problem 1.[/b] Points $D$ and $E$ are chosen on the sides $AB$ and $AC$, respectively, of a triangle $\triangle ABC$ such that $DE\parallel BC$. The circumcircle $k$ of triangle $\triangle ADE$ intersects the lines $BE$ and $CD$ at the points $M$ and $N$ (different from $E$ and $D$). The lines $AM$ and $AN$ intersect the side $BC$ at points $P$ and $Q$ such that $BC=2\cdot PQ$ and the point $P$ lies between $B$ and $Q$. Prove that the circle $k$ passes through the point of intersection of the side $BC$ and the angle bisector of $\angle BAC$. [i]Nikolai Nikolov[/i]

2007 Estonia National Olympiad, 2

Tags: symmetry , geometry
Two radii OA and OB of a circle c with midpoint O are perpendicular. Another circle touches c in point Q and the radii in points C and D, respectively. Determine $ \angle{AQC}$.

2002 IberoAmerican, 3

Let $P$ be a point in the interior of the equilateral triangle $\triangle ABC$ such that $\sphericalangle{APC}=120^\circ$. Let $M$ be the intersection of $CP$ with $AB$, and $N$ the intersection of $AP$ and $BC$. Find the locus of the circumcentre of the triangle $MBN$ as $P$ varies.

2011 Lusophon Mathematical Olympiad, 2

Consider two circles, tangent at $T$, both inscribed in a rectangle of height $2$ and width $4$. A point $E$ moves counterclockwise around the circle on the left, and a point $D$ moves clockwise around the circle on the right. $E$ and $D$ start moving at the same time; $E$ starts at $T$, and $D$ starts at $A$, where $A$ is the point where the circle on the right intersects the top side of the rectangle. Both points move with the same speed. Find the locus of the midpoints of the segments joining $E$ and $D$.

2015 AMC 10, 10

How many rearrangements of $abcd$ are there in which no two adjacent letters are also adjacent letters in the alphabet? For example, no such rearrangements could include either $ab$ or $ba$. $ \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4 $

2002 CentroAmerican, 6

A path from $ (0,0)$ to $ (n,n)$ on the lattice is made up of unit moves upward or rightward. It is balanced if the sum of the x-coordinates of its $ 2n\plus{}1$ vertices equals the sum of their y-coordinates. Show that a balanced path divides the square with vertices $ (0,0)$, $ (n,0)$, $ (n,n)$, $ (0,n)$ into two parts with equal area.

2012 Korea - Final Round, 2

For a triangle $ ABC $ which $ \angle B \ne 90^{\circ} $ and $ AB \ne AC $, define $ P_{ABC} $ as follows ; Let $ I $ be the incenter of triangle $ABC$, and let $ D, E, F $ be the intersection points with the incircle and segments $ BC, CA, AB $. Two lines $ AB $ and $ DI $ meet at $ S $ and let $ T $ be the intersection point of line $ DE $ and the line which is perpendicular with $ DF $ at $ F $. The line $ ST $ intersects line $ EF $ at $ R$. Now define $ P_{ABC} $ be one of the intersection points of the incircle and the circle with diameter $ IR $, which is located in other side with $ A $ about $ IR $. Now think of an isosceles triangle $ XYZ $ such that $ XZ = YZ > XY $. Let $ W $ be the point on the side $ YZ $ such that $ WY < XY $ and Let $ K = P_{YXW} $ and $ L = P_{ZXW} $. Prove that $ 2 KL \le XY $.

2004 Junior Balkan MO, 2

Let $ABC$ be an isosceles triangle with $AC=BC$, let $M$ be the midpoint of its side $AC$, and let $Z$ be the line through $C$ perpendicular to $AB$. The circle through the points $B$, $C$, and $M$ intersects the line $Z$ at the points $C$ and $Q$. Find the radius of the circumcircle of the triangle $ABC$ in terms of $m = CQ$.

2010 China Team Selection Test, 1

Let $ABCD$ be a convex quadrilateral with $A,B,C,D$ concyclic. Assume $\angle ADC$ is acute and $\frac{AB}{BC}=\frac{DA}{CD}$. Let $\Gamma$ be a circle through $A$ and $D$, tangent to $AB$, and let $E$ be a point on $\Gamma$ and inside $ABCD$. Prove that $AE\perp EC$ if and only if $\frac{AE}{AB}-\frac{ED}{AD}=1$.

2001 Rioplatense Mathematical Olympiad, Level 3, 2

Let $ABC$ be an acute triangle and $A_1, B_1$ and $C_1$, points on the sides $BC, CA$ and $AB$, respectively, such that $CB_1 = A_1B_1$ and $BC_1 = A_1C_1$. Let $D$ be the symmetric of $A_1$ with respect to $B_1C_1, O$ and $O_1$ are the circumcenters of triangles $ABC$ and $A_1B_1C_1$, respectively. If $A \ne D, O \ne O_1$ and $AD$ is perpendicular to $OO_1$, prove that $AB = AC$.

2009 Today's Calculation Of Integral, 499

Evaluate \[ \int_0^{\pi} (\sqrt[2009]{\cos x}\plus{}\sqrt[2009]{\sin x}\plus{}\sqrt[2009]{\tan x})\ dx.\]

2005 USA Team Selection Test, 6

Let $ABC$ be an acute scalene triangle with $O$ as its circumcenter. Point $P$ lies inside triangle $ABC$ with $\angle PAB = \angle PBC$ and $\angle PAC = \angle PCB$. Point $Q$ lies on line $BC$ with $QA = QP$. Prove that $\angle AQP = 2\angle OQB$.

2007 Pre-Preparation Course Examination, 14

Find all $a,b,c \in \mathbb{N}$ such that \[a^2b|a^3+b^3+c^3,\qquad b^2c|a^3+b^3+c^3, \qquad c^2a|a^3+b^3+c^3.\] [PS: The original problem was this: Find all $a,b,c \in \mathbb{N}$ such that \[a^2b|a^3+b^3+c^3,\qquad b^2c|a^3+b^3+c^3, \qquad \color{red}{c^2b}|a^3+b^3+c^3.\] But I think the author meant $c^2a|a^3+b^3+c^3$, just because of symmetry]

2008 Germany Team Selection Test, 3

Let $ ABCD$ be an isosceles trapezium. Determine the geometric location of all points $ P$ such that \[ |PA| \cdot |PC| \equal{} |PB| \cdot |PD|.\]

2013 Dutch IMO TST, 5

Let $ABCDEF$ be a cyclic hexagon satisfying $AB\perp BD$ and $BC=EF$.Let $P$ be the intersection of lines $BC$ and $AD$ and let $Q$ be the intersection of lines $EF$ and $AD$.Assume that $P$ and $Q$ are on the same side of $D$ and $A$ is on the opposite side.Let $S$ be the midpoint of $AD$.Let $K$ and $L$ be the incentres of $\triangle BPS$ and $\triangle EQS$ respectively.Prove that $\angle KDL=90^0$.

2019 Serbia National MO, 4

For a $\triangle ABC$ , let $A_1$ be the symmetric point of the intersection of angle bisector of $\angle BAC$ and $BC$ , where center of the symmetry is the midpoint of side $BC$, In the same way we define $B_1 $ ( on $AC$ ) and $C_1$ (on $AB$). Intersection of circumcircle of $\triangle A_1B_1C_1$ and line $AB$ is the set $\{Z,C_1 \}$, with $BC$ is the set $\{X,A_1\}$ and with $CA$ is the set $\{Y,B_1\}$. If the perpendicular lines from $X,Y,Z$ on $BC,CA$ and $ AB$ , respectively are concurrent , prove that $\triangle ABC$ is isosceles.

2001 Mediterranean Mathematics Olympiad, 1

Let $P$ and $Q$ be points on a circle $k$. A chord $AC$ of $k$ passes through the midpoint $M$ of $PQ$. Consider a trapezoid $ABCD$ inscribed in $k$ with $AB \parallel PQ \parallel CD$. Prove that the intersection point $X$ of $AD$ and $BC$ depends only on $k$ and $P,Q.$

2002 AMC 10, 20

Let $ a$, $ b$, and $ c$ be real numbers such that $ a \minus{} 7b \plus{} 8c \equal{} 4$ and $ 8a \plus{} 4b \minus{} c \equal{} 7$. Then $ a^2 \minus{} b^2 \plus{} c^2$ is $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 8$

2005 All-Russian Olympiad, 1

Ten mutually distinct non-zero reals are given such that for any two, either their sum or their product is rational. Prove that squares of all these numbers are rational.

2006 Kyiv Mathematical Festival, 3

Tags: symmetry , algebra
See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Find all positive integers $a, b, c$ such that $3abc+11(a+b+c)=6(ab+bc+ac)+18.$