Found problems: 701
2010 Vietnam National Olympiad, 5
Let a positive integer $n$.Consider square table $3*3$.One use $n$
colors to color all cell of table such that
each cell is colored by exactly one color.
Two colored table is same if we can receive them from other by a rotation
through center of $3*3$ table
How many way to color this square table satifies above conditions.
2018 IMO Shortlist, G2
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2011 South africa National Olympiad, 6
In triangle $ABC$, the incircle touches $BC$ in $D$, $CA$ in $E$ and $AB$ in $F$. The bisector of $\angle BAC$ intersects $BC$ in $G$. The lines $BE$ and $CF$ intersect in $J$. The line through $J$ perpendicular to $EF$ intersects $BC$ in $K$. Prove that
$\frac{GK}{DK}=\frac{AE}{CE}+\frac{AF}{BF}$
2010 AMC 12/AHSME, 23
Monic quadratic polynomials $ P(x)$ and $ Q(x)$ have the property that $ P(Q(x))$ has zeroes at $ x\equal{}\minus{}23,\minus{}21,\minus{}17, \text{and} \minus{}15$, and $ Q(P(x))$ has zeroes at $ x\equal{}\minus{}59, \minus{}57, \minus{}51, \text{and} \minus{}49$. What is the sum of the minimum values of $ P(x)$ and $ Q(x)$?
$ \textbf{(A)}\ \text{\minus{}100} \qquad \textbf{(B)}\ \text{\minus{}82} \qquad \textbf{(C)}\ \text{\minus{}73} \qquad \textbf{(D)}\ \text{\minus{}64} \qquad \textbf{(E)}\ 0$
2007 Croatia Team Selection Test, 5
Let there be two circles. Find all points $M$ such that there exist two points, one on each circle such that $M$ is their midpoint.
1976 IMO Longlists, 46
Let $ a,b,c,d$ be nonnegative real numbers. Prove that
\[ a^4\plus{}b^4\plus{}c^4\plus{}d^4\plus{}2abcd \ge a^2b^2\plus{}a^2c^2\plus{}a^2d^2\plus{}b^2c^2\plus{}b^2d^2\plus{}c^2d^2.\]
2004 AMC 10, 23
Circles $A$, $B$, and $C$ are externally tangent to each other and internally tangent to circle $D$. Circles $B$ and $C$ are congruent. Circle $A$ has radius 1 and passes through the center of $D$. What is the radius of circle $B$?
[asy]
size(200);
defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(Circle(origin, 2));
draw(Circle((-1,0), 1));
draw(Circle((6/9, 8/9), 8/9));
draw(Circle((6/9, -8/9), 8/9));
label("$A$", (-1.2, -0.2), NE);
label("$B$", (6/9, 7/9), N);
label("$C$", (6/9, -7/9), S);
label("$D$", 2*dir(110), dir(110));[/asy]
$ \textbf{(A)}\; \frac23\qquad
\textbf{(B)}\; \frac{\sqrt{3}}2\qquad
\textbf{(C)}\; \frac78\qquad
\textbf{(D)}\; \frac89\qquad
\textbf{(E)}\; \frac{1+\sqrt3}3 $
2008 Harvard-MIT Mathematics Tournament, 2
Let $ S \equal{} \{1,2,\ldots,2008\}$. For any nonempty subset $ A\in S$, define $ m(A)$ to be the median of $ A$ (when $ A$ has an even number of elements, $ m(A)$ is the average of the middle two elements). Determine the average of $ m(A)$, when $ A$ is taken over all nonempty subsets of $ S$.
2015 Sharygin Geometry Olympiad, P14
Let $ABC$ be an acute-angled, nonisosceles triangle. Point $A_1, A_2$ are symmetric to the feet of the internal and the external bisectors of angle $A$ wrt the midpoint of $BC$. Segment $A_1A_2$ is a diameter of a circle $\alpha$. Circles $\beta$ and $\gamma$ are defined similarly. Prove that these three circles have two common points.
2008 Junior Balkan Team Selection Tests - Romania, 1
Consider the acute-angled triangle $ ABC$, altitude $ AD$ and point $ E$ - intersection of $ BC$ with diameter from $ A$ of circumcircle. Let $ M,N$ be symmetric points of $ D$ with respect to the lines $ AC$ and $ AB$ respectively. Prove that $ \angle{EMC} \equal{} \angle{BNE}$.
2009 Turkey Team Selection Test, 3
Within a group of $ 2009$ people, every two people has exactly one common friend. Find the least value of the difference between the person with maximum number of friends and the person with minimum number of friends.
2014 Sharygin Geometry Olympiad, 21
Let $ABCD$ be a circumscribed quadrilateral. Its incircle $\omega$ touches the sides $BC$ and $DA$ at points $E$ and $F$ respectively. It is known that lines $AB,FE$ and $CD$ concur. The circumcircles of triangles $AED$ and $BFC$ meet $\omega$ for the second time at points $E_1$ and $F_1$. Prove that $EF$ is parallel to $E_1 F_1$.
1993 India National Olympiad, 4
Let $ABC$ be a triangle in a plane $\pi$. Find the set of all points $P$ (distinct from $A,B,C$ ) in the plane $\pi$ such that the circumcircles of triangles $ABP$, $BCP$, $CAP$ have the same radii.
1997 Dutch Mathematical Olympiad, 5
Given is a triangle $ABC$ and a point $K$ within the triangle. The point $K$ is mirrored in the sides of the triangle: $P , Q$ and $R$ are the mirrorings of $K$ in $AB , BC$ and $CA$, respectively . $M$ is the center of the circle passing through the vertices of triangle $PQR$. $M$ is mirrored again in the sides of triangle $ABC$: $P', Q'$ and $R'$ are the mirror of $M$ in $AB$ respectively, $BC$ and $CA$.
a. Prove that $K$ is the center of the circle passing through the vertices of triangle $P'Q'R'$ .
b. Where should you choose $K$ within triangle $ABC$ so that $M$ and $K$ coincide? Prove your answer.
1962 Miklós Schweitzer, 4
Show that \[ \prod_{1\leq x < y \leq \frac{p\minus{}1}{2}} (x^2\plus{}y^2) \equiv (\minus{}1)^{\lfloor\frac{p\plus{}1}{8}\rfloor} \;(\textbf{mod}\;p\ ) \] for every prime $ p\equiv 3 \;(\textbf{mod}\;4\ )$. [J. Suranyi]
1985 Traian Lălescu, 1.1
We are given two concurrent lines $ d_1 $ and $ d_2. $ Find, analytically, the acute angle formed by them such that for any point $ A $ the equation $ A=A_4 $ holds, where $ A_1 $ is the symmetric of $ A $ with respect to $ d_1, $ $ A_2 $ is the symmetric of $ A_1 $ with respect to $ d_2, $ $ A_3 $ is the symmetric of $ A_2 $ with respect to $ d_1, $ and $ A_4 $ is the symmetric of $ A_3 $ with respect to $ d_2. $
1999 IMO Shortlist, 3
A set $ S$ of points from the space will be called [b]completely symmetric[/b] if it has at least three elements and fulfills the condition that for every two distinct points $ A$ and $ B$ from $ S$, the perpendicular bisector plane of the segment $ AB$ is a plane of symmetry for $ S$. Prove that if a completely symmetric set is finite, then it consists of the vertices of either a regular polygon, or a regular tetrahedron or a regular octahedron.
2011 All-Russian Olympiad, 4
There are some counters in some cells of $100\times 100$ board. Call a cell [i]nice[/i] if there are an even number of counters in adjacent cells. Can exactly one cell be [i]nice[/i]?
[i]K. Knop[/i]
1998 AIME Problems, 11
Three of the edges of a cube are $\overline{AB}, \overline{BC},$ and $\overline{CD},$ and $\overline{AD}$ is an interior diagonal. Points $P, Q,$ and $R$ are on $\overline{AB}, \overline{BC},$ and $\overline{CD},$ respectively, so that $AP=5, PB=15, BQ=15,$ and $CR=10.$ What is the area of the polygon that is the intersection of plane $PQR$ and the cube?
2015 AMC 12/AHSME, 22
Six chairs are evenly spaced around a circular table. One person is seated in each chair. Each person gets up and sits down in a chair that is not the same chair and is not adjacent to the chair he or she originally occupied, so that again one person is seated in each chair. In how many ways can this be done?
$ \textbf{(A) }14\qquad\textbf{(B) }16\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad\textbf{(E) }24 $
2007 AIME Problems, 3
Square $ABCD$ has side length $13$, and points $E$ and $F$ are exterior to the square such that $BE=DF=5$ and $AE=CF=12$. Find $EF^{2}$.
[asy]
size(200);
defaultpen(fontsize(10));
real x=22.61986495;
pair A=(0,26), B=(26,26), C=(26,0), D=origin, E=A+24*dir(x), F=C+24*dir(180+x);
draw(B--C--F--D--C^^D--A--E--B--A, linewidth(0.7));
dot(A^^B^^C^^D^^E^^F);
pair point=(13,13);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));[/asy]
Oliforum Contest I 2008, 3
Let $ a,b,c$ be three pairwise distinct real numbers such that $ a\plus{}b\plus{}c\equal{}6\equal{}ab\plus{}bc\plus{}ca\minus{}3$. Prove that $ 0<abc<4$.
2014 Math Prize For Girls Problems, 10
An ant is on one face of a cube. At every step, the ant walks to one of its four neighboring faces with equal probability. What is the expected (average) number of steps for it to reach the face opposite its starting face?
2022 European Mathematical Cup, 1
Let $n\geq 3$ be a positive integer. Alice and Bob are playing a game in which they take turns colouring the vertices of a regular $n$-gon. Alice plays the first move. Initially, no vertex is coloured. Both players start the game with $0$ points.
In their turn, a player colours a vertex $V$ which has not been coloured and gains $k$ points where $k$ is the number of already coloured neighbouring vertices of $V$. (Thus, $k$ is either $0$, $1$ or $2$.)
The game ends when all vertices have been coloured and the player with more points wins; if they have the same number of points, no one wins. Determine all $n\geq 3$ for which Alice has a winning strategy and all $n\geq 3$ for which Bob has a winning strategy.
2021 Iranian Geometry Olympiad, 1
With putting the four shapes drawn in the following figure together make a shape with at least two reflection symmetries.
[img]https://cdn.artofproblemsolving.com/attachments/6/0/8ace983d3d9b5c7f93b03c505430e1d2d189fd.png[/img]
[i]Proposed by Mahdi Etesamifard - Iran[/i]