Found problems: 701
2001 District Olympiad, 3
Consider a triangle $\Delta ABC$ and three points $D,E,F$ such that: $B$ and $E$ are on different side of the line $AC$, $C$ and $D$ are on different sides of $AB$, $A$ and $F$ are on the same side of the line $BC$. Also $\Delta ADB \sim \Delta CEA \sim \Delta CFB$. Let $M$ be the middle point of $AF$. Prove that:
a)$\Delta BDF \sim \Delta FEC$.
b) $M$ is the middle point of $DE$.
[i]Dan Branzei[/i]
1993 Taiwan National Olympiad, 2
Let $E$ and $F$ are distinct points on the diagonal $AC$ of a parallelogram $ABCD$ . Prove that , if there exists a cricle through $E,F$ tangent to rays $BA,BC$ then there also exists a cricle through $E,F$ tangent to rays $DA,DC$.
2008 Baltic Way, 7
How many pairs $ (m,n)$ of positive integers with $ m < n$ fulfill the equation $ \frac {3}{2008} \equal{} \frac 1m \plus{} \frac 1n$?
2012 Kyoto University Entry Examination, 1A
Find the area of the figure bounded by two curves $y=x^4,\ y=x^2+2$.
2007 IberoAmerican, 4
In a $ 19\times 19$ board, a piece called [i]dragon[/i] moves as follows: It travels by four squares (either horizontally or vertically) and then it moves one square more in a direction perpendicular to its previous direction. It is known that, moving so, a dragon can reach every square of the board.
The [i]draconian distance[/i] between two squares is defined as the least number of moves a dragon needs to move from one square to the other.
Let $ C$ be a corner square, and $ V$ the square neighbor of $ C$ that has only a point in common with $ C$. Show that there exists a square $ X$ of the board, such that the draconian distance between $ C$ and $ X$ is greater than the draconian distance between $ C$ and $ V$.
2009 IberoAmerican, 3
Let $ C_1$ and $ C_2$ be two congruent circles centered at $ O_1$ and $ O_2$, which intersect at $ A$ and $ B$. Take a point $ P$ on the arc $ AB$ of $ C_2$ which is contained in $ C_1$. $ AP$ meets $ C_1$ at $ C$, $ CB$ meets $ C_2$ at $ D$ and the bisector of $ \angle CAD$ intersects $ C_1$ and $ C_2$ at $ E$ and $ L$, respectively. Let $ F$ be the symmetric point of $ D$ with respect to the midpoint of $ PE$. Prove that there exists a point $ X$ satisfying $ \angle XFL \equal{} \angle XDC \equal{} 30^\circ$ and $ CX \equal{} O_1O_2$.
[i]
Author: Arnoldo Aguilar (El Salvador)[/i]
1999 National Olympiad First Round, 31
$30$ same balls are put into four boxes $ A$, $ B$, $ C$, $ D$ in such a way that sum of number of balls in $ A$ and $ B$ is greater than sum of in $ C$ and $ D$. How many possible ways are there?
$\textbf{(A)}\ 2472 \qquad\textbf{(B)}\ 2600 \qquad\textbf{(C)}\ 2728 \qquad\textbf{(D)}\ 2856 \qquad\textbf{(E)}\ \text{None}$
1998 Polish MO Finals, 3
$S$ is a board containing all unit squares in the $xy$ plane whose vertices have integer coordinates and which lie entirely inside the circle $x^2 + y^2 = 1998^2$. In each square of $S$ is written $+1$. An allowed move is to change the sign of every square in $S$ in a given row, column or diagonal. Can we end up with exactly one $-1$ and $+1$ on the rest squares by a sequence of allowed moves?
2007 China Girls Math Olympiad, 4
The set $ S$ consists of $ n > 2$ points in the plane. The set $ P$ consists of $ m$ lines in the plane such that every line in $ P$ is an axis of symmetry for $ S$. Prove that $ m\leq n$, and determine when equality holds.
2005 AMC 10, 19
Three one-inch squares are palced with their bases on a line. The center square is lifted out and rotated $ 45^\circ$, as shown. Then it is centered and lowered into its original location until it touches both of the adjoining squares. How many inches is the point $ B$ from the line on which the bases of the original squares were placed?
[asy]unitsize(1inch);
defaultpen(linewidth(.8pt)+fontsize(8pt));
draw((0,0)--((1/3) + 3*(1/2),0));
fill(((1/6) + (1/2),0)--((1/6) + (1/2),(1/2))--((1/6) + 1,(1/2))--((1/6) + 1,0)--cycle, rgb(.7,.7,.7));
draw(((1/6),0)--((1/6) + (1/2),0)--((1/6) + (1/2),(1/2))--((1/6),(1/2))--cycle);
draw(((1/6) + (1/2),0)--((1/6) + (1/2),(1/2))--((1/6) + 1,(1/2))--((1/6) + 1,0)--cycle);
draw(((1/6) + 1,0)--((1/6) + 1,(1/2))--((1/6) + (3/2),(1/2))--((1/6) + (3/2),0)--cycle);
draw((2,0)--(2 + (1/3) + (3/2),0));
draw(((2/3) + (3/2),0)--((2/3) + 2,0)--((2/3) + 2,(1/2))--((2/3) + (3/2),(1/2))--cycle);
draw(((2/3) + (5/2),0)--((2/3) + (5/2),(1/2))--((2/3) + 3,(1/2))--((2/3) + 3,0)--cycle);
label("$B$",((1/6) + (1/2),(1/2)),NW);
label("$B$",((2/3) + 2 + (1/4),(29/30)),NNE);
draw(((1/6) + (1/2),(1/2)+0.05)..(1,.8)..((2/3) + 2 + (1/4)-.05,(29/30)),EndArrow(HookHead,3));
fill(((2/3) + 2 + (1/4),(1/4))--((2/3) + (5/2) + (1/10),(1/2) + (1/9))--((2/3) + 2 + (1/4),(29/30))--((2/3) + 2 - (1/10),(1/2) + (1/9))--cycle, rgb(.7,.7,.7));
draw(((2/3) + 2 + (1/4),(1/4))--((2/3) + (5/2) + (1/10),(1/2) + (1/9))--((2/3) + 2 + (1/4),(29/30))--((2/3) + 2 - (1/10),(1/2) + (1/9))--cycle);[/asy]$ \textbf{(A)}\ 1\qquad \textbf{(B)}\ \sqrt {2}\qquad \textbf{(C)}\ \frac {3}{2}\qquad \textbf{(D)}\ \sqrt {2} \plus{} \frac {1}{2}\qquad \textbf{(E)}\ 2$
2014 India Regional Mathematical Olympiad, 1
let $ABCD$ be a isosceles trapezium having an incircle with $AB$ parallel to $CD$.
let $CE$ be the perpendicular from $C$ on $AB$
prove that
$ CE^2 = AB. CD $
2013 ELMO Shortlist, 10
Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.
[i]Proposed by David Stoner[/i]
2014 Turkey Team Selection Test, 2
Find all $f$ functions from real numbers to itself such that for all real numbers $x,y$ the equation
\[f(f(y)+x^2+1)+2x=y+(f(x+1))^2\]
holds.
1995 Italy TST, 2
Twenty-one rectangles of size $3\times 1$ are placed on an $8\times 8$ chessboard, leaving only one free unit square. What position can the free square lie at?
2010 AIME Problems, 9
Let $ ABCDEF$ be a regular hexagon. Let $ G$, $ H$, $ I$, $ J$, $ K$, and $ L$ be the midpoints of sides $ AB$, $ BC$, $ CD$, $ DE$, $ EF$, and $ AF$, respectively. The segments $ AH$, $ BI$, $ CJ$, $ DK$, $ EL$, and $ FG$ bound a smaller regular hexagon. Let the ratio of the area of the smaller hexagon to the area of $ ABCDEF$ be expressed as a fraction $ \frac {m}{n}$ where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.
2014 Harvard-MIT Mathematics Tournament, 1
Let $O_1$ and $O_2$ be concentric circles with radii 4 and 6, respectively. A chord $AB$ is drawn in $O_1$ with length $2$. Extend $AB$ to intersect $O_2$ in points $C$ and $D$. Find $CD$.
1987 IMO Shortlist, 14
How many words with $n$ digits can be formed from the alphabet $\{0, 1, 2, 3, 4\}$, if neighboring digits must differ by exactly one?
[i]Proposed by Germany, FR.[/i]
1949 Moscow Mathematical Olympiad, 170
What is a centrally symmetric polygon of greatest area one can inscribe in a given triangle?
1985 IMO Longlists, 33
A sequence of polynomials $P_m(x, y, z), m = 0, 1, 2, \cdots$, in $x, y$, and $z$ is defined by $P_0(x, y, z) = 1$ and by
\[P_m(x, y, z) = (x + z)(y + z)P_{m-1}(x, y, z + 1) - z^2P_{m-1}(x, y, z)\]
for $m > 0$. Prove that each $P_m(x, y, z)$ is symmetric, in other words, is unaltered by any permutation of $x, y, z.$
2006 Sharygin Geometry Olympiad, 1
Two straight lines intersecting at an angle of $46^o$ are the axes of symmetry of the figure $F$ on the plane. What is the smallest number of axes of symmetry this figure can have?
2002 Moldova National Olympiad, 4
The circles $ C_1$ and $ C_2$ with centers $ O_1$ and $ O_2$ respectively are externally tangent. Their common tangent not intersecting the segment $ O_1O_2$ touches $ C_1$ at $ A$ and $ C_2$ at $ B$. Let $ C$ be the reflection of $ A$ in $ O_1O_2$ and $ P$ be the intersection of $ AC$ and $ O_1O_2$. Line $ BP$ meets $ C_2$ again at $ L$. Prove that line $ CL$ is tangent to the circle $ C_2$.
2000 Belarus Team Selection Test, 7.3
A game is played by $n$ girls ($n \geq 2$), everybody having a ball. Each of the $\binom{n}{2}$ pairs of players, is an arbitrary order, exchange the balls they have at the moment. The game is called nice [b]nice[/b] if at the end nobody has her own ball and it is called [b]tiresome[/b] if at the end everybody has her initial ball. Determine the values of $n$ for which there exists a nice game and those for which there exists a tiresome game.
2009 China Team Selection Test, 1
Given that points $ D,E$ lie on the sidelines $ AB,BC$ of triangle $ ABC$, respectively, point $ P$ is in interior of triangle $ ABC$ such that $ PE \equal{} PC$ and $ \bigtriangleup DEP\sim \bigtriangleup PCA.$ Prove that $ BP$ is tangent of the circumcircle of triangle $ PAD.$
2010 Ukraine Team Selection Test, 5
Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram.
Prove that $GR=GS$.
[i]Proposed by Hossein Karke Abadi, Iran[/i]
2013 ELMO Shortlist, 9
Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$.
[i]Proposed by Allen Liu[/i]