This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 701

1983 IMO Longlists, 56

Consider the expansion \[(1 + x + x^2 + x^3 + x^4)^{496} = a_0 + a_1x + \cdots + a_{1984}x^{1984}.\] [b](a)[/b] Determine the greatest common divisor of the coefficients $a_3, a_8, a_{13}, \ldots , a_{1983}.$ [b](b)[/b] Prove that $10^{340 }< a_{992} < 10^{347}.$

Cono Sur Shortlist - geometry, 2005.G3.4

Let $ABC$ be a isosceles triangle, with $AB=AC$. A line $r$ that pass through the incenter $I$ of $ABC$ touches the sides $AB$ and $AC$ at the points $D$ and $E$, respectively. Let $F$ and $G$ be points on $BC$ such that $BF=CE$ and $CG=BD$. Show that the angle $\angle FIG$ is constant when we vary the line $r$.

2004 All-Russian Olympiad, 4

Let $O$ be the circumcenter of an acute-angled triangle $ABC$, let $T$ be the circumcenter of the triangle $AOC$, and let $M$ be the midpoint of the segment $AC$. We take a point $D$ on the side $AB$ and a point $E$ on the side $BC$ that satisfy $\angle BDM = \angle BEM = \angle ABC$. Show that the straight lines $BT$ and $DE$ are perpendicular.

1999 Greece JBMO TST, 5

$\Phi$ is the union of all triangles that are symmetric of the triangle $ABC$ wrt a point $O$, as point $O$ moves along the triangle's sides. If the area of the triangle is $E$, find the area of $\Phi$.

2008 Purple Comet Problems, 5

Tags: symmetry
Find the sum of all the digits in the decimal representations of all the positive integers less than $1000.$

1959 Putnam, B7

For each positive integer $n$, let $f_n$ be a real-valued symmetric function of $n$ real variables. Suppose that for all $n$ and all real numbers $x_1,\ldots,x_n, x_{n+1},y$ it is true that $\;(1)\; f_{n}(x_1 +y ,\ldots, x_n +y) = f_{n}(x_1 ,\ldots, x_n) +y,$ $\;(2)\;f_{n}(-x_1 ,\ldots, -x_n) =-f_{n}(x_1 ,\ldots, x_n),$ $\;(3)\; f_{n+1}(f_{n}(x_1,\ldots, x_n),\ldots, f_{n}(x_1,\ldots, x_n), x_{n+1}) =f_{n+1}(x_1 ,\ldots, x_{n}).$ Prove that $f_{n}(x_{1},\ldots, x_n) =\frac{x_{1}+\cdots +x_{n}}{n}.$

2005 Polish MO Finals, 2

The points $A, B, C, D$ lie in this order on a circle $o$. The point $S$ lies inside $o$ and has properties $\angle SAD=\angle SCB$ and $\angle SDA= \angle SBC$. Line which in which angle bisector of $\angle ASB$ in included cut the circle in points $P$ and $Q$. Prove $PS =QS$.

2014 ELMO Shortlist, 12

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$. [i]Proposed by David Stoner[/i]

2004 Irish Math Olympiad, 4

Tags: symmetry
Prove that there are only two real numbers $x$ such that \[(x-1)(x-2)(x-3)(x-4)(x-5)(x-6) = 720\]

2013 Pan African, 2

The cells of an $n\times n$ board with $n\ge 5$ are coloured black or white so that no three adjacent squares in a row, column or diagonal are the same colour. Show that for any $3\times 3$ square within the board, two of its corner squares are coloured black and two are coloured white.

2008 Sharygin Geometry Olympiad, 1

(B.Frenkin, 8) Does a regular polygon exist such that just half of its diagonals are parallel to its sides?

1996 IMO Shortlist, 7

let $ V$ be a finitive set and $ g$ and $ f$ be two injective surjective functions from $ V$to$ V$.let $ T$ and $ S$ be two sets such that they are defined as following" $ S \equal{} \{w \in V: f(f(w)) \equal{} g(g(w))\}$ $ T \equal{} \{w \in V: f(g(w)) \equal{} g(f(w))\}$ we know that $ S \cup T \equal{} V$, prove: for each $ w \in V : f(w) \in S$ if and only if $ g(w) \in S$

1999 USAMTS Problems, 4

There are $8436$ steel balls, each with radius $1$ centimeter, stacked in a tetrahedral pile, with one ball on top, $3$ balls in the second layer, $6$ in the third layer, $10$ in the fourth, and so on. Determine the height of the pile in centimeters.

2016 Oral Moscow Geometry Olympiad, 6

Given an acute triangle $ABC$. Let $A'$ be a point symmetric to $A$ with respect to $BC, O_A$ is the center of the circle passing through $A$ and the midpoints of the segments $A'B$ and $A'C. O_B$ and $O_C$ points are defined similarly. Find the ratio of the radii of the circles circumscribed around the triangles $ABC$ and $O_AO_BO_C$.

1975 USAMO, 5

A deck of $ n$ playing cards, which contains three aces, is shuffled at random (it is assumed that all possible card distributions are equally likely). The cards are then turned up one by one from the top until the second ace appears. Prove that the expected (average) number of cards to be turned up is $ (n\plus{}1)/2$.

JBMO Geometry Collection, 2004

Let $ABC$ be an isosceles triangle with $AC=BC$, let $M$ be the midpoint of its side $AC$, and let $Z$ be the line through $C$ perpendicular to $AB$. The circle through the points $B$, $C$, and $M$ intersects the line $Z$ at the points $C$ and $Q$. Find the radius of the circumcircle of the triangle $ABC$ in terms of $m = CQ$.

2007 France Team Selection Test, 2

Let $a,b,c,d$ be positive reals such taht $a+b+c+d=1$. Prove that: \[6(a^{3}+b^{3}+c^{3}+d^{3})\geq a^{2}+b^{2}+c^{2}+d^{2}+\frac{1}{8}.\]

2016 Abels Math Contest (Norwegian MO) Final, 3b

Let $ABC$ be an acute triangle with $AB < AC$. The points $A_1$ and $A_2$ are located on the line $BC$ so that $AA_1$ and $AA_2$ are the inner and outer angle bisectors at $A$ for the triangle $ABC$. Let $A_3$ be the mirror image $A_2$ with respect to $C$, and let $Q$ be a point on $AA_1$ such that $\angle A_1QA_3 = 90^o$. Show that $QC // AB$.

2009 AMC 10, 24

The keystone arch is an ancient architectural feature. It is composed of congruent isosceles trapezoids fitted together along the non-parallel sides, as shown. The bottom sides of the two end trapezoids are horizontal. In an arch made with $ 9$ trapezoids, let $ x$ be the angle measure in degrees of the larger interior angle of the trapezoid. What is $ x$? [asy]unitsize(4mm); defaultpen(linewidth(.8pt)); int i; real r=5, R=6; path t=r*dir(0)--r*dir(20)--R*dir(20)--R*dir(0); for(i=0; i<9; ++i) { draw(rotate(20*i)*t); } draw((-r,0)--(R+1,0)); draw((-R,0)--(-R-1,0));[/asy]$ \textbf{(A)}\ 100 \qquad \textbf{(B)}\ 102 \qquad \textbf{(C)}\ 104 \qquad \textbf{(D)}\ 106 \qquad \textbf{(E)}\ 108$

2015 Sharygin Geometry Olympiad, P6

Let $AA', BB'$ and $CC'$ be the altitudes of an acute-angled triangle $ABC$. Points $C_a, C_b$ are symmetric to $C' $ wrt $AA'$ and $BB'$. Points $A_b, A_c, B_c, B_a$ are defined similarly. Prove that lines $A_bB_a, B_cC_b$ and $C_aA_c$ are parallel.

2016 Israel National Olympiad, 2

We are given a cone with height 6, whose base is a circle with radius $\sqrt{2}$. Inside the cone, there is an inscribed cube: Its bottom face on the base of the cone, and all of its top vertices lie on the cone. What is the length of the cube's edge? [img]https://i.imgur.com/AHqHHP6.png[/img]

1984 AIME Problems, 11

A gardener plants three maple trees, four oak trees, and five birch trees in a row. He plants them in random order, each arrangement being equally likely. Let $\frac{m}{n}$ in lowest terms be the probability that no two birch trees are next to one another. Find $m + n$.

2010 Purple Comet Problems, 26

In the coordinate plane a parabola passes through the points $(7,6)$, $(7,12)$, $(18,19)$, and $(18,48)$. The axis of symmetry of the parabola is a line with slope $\tfrac{r}{s}$ where r and s are relatively prime positive integers. Find $r + s$.

2012 Math Prize For Girls Problems, 17

How many ordered triples $(a, b, c)$, where $a$, $b$, and $c$ are from the set $\{ 1, 2, 3, \dots, 17 \}$, satisfy the equation \[ a^3 + b^3 + c^3 + 2abc = a^2b + a^2c + b^2c + ab^2 + ac^2 + bc^2 \, ? \]

VMEO III 2006, 12.4

Given a binary serie $A=a_1a_2...a_k$ is called "symmetry" if $a_i=a_{k+1-i}$ for all $i=1,2,3,...,k$, and $k$ is the length of that binary serie. If $A=11...1$ or $A=00...0$ then it is called "special". Find all positive integers $m$ and $n$ such that there exist non "special" binary series $A$ (length $m$) and $B$ (length $n$) satisfying when we place them next to each other, we receive a "symmetry" binary serie $AB$