Found problems: 280
Denmark (Mohr) - geometry, 1992.2
In a right-angled triangle, $a$ and $b$ denote the lengths of the two catheti. A circle with radius $r$ has the center on the hypotenuse and touches both catheti. Show that $\frac{1}{a}+\frac{1}{b}=\frac{1}{r}$.
2018 Azerbaijan IMO TST, 2
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
2018 India IMO Training Camp, 2
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
I Soros Olympiad 1994-95 (Rus + Ukr), 9.6
A circle can be drawn around the quadrilateral $ABCD$. $K$ is a point on the diagonal $BD$ . The straight line $CK$ intersects the side $AD$ at the point $M$. Prove that the circles circumscribed around the triangles $BCK$ and $ACM$ are tangent.
2023 Sharygin Geometry Olympiad, 10
Altitudes $BE$ and $CF$ of an acute-angled triangle $ABC$ meet at point $H$. The perpendicular from $H$ to $EF$ meets the line $\ell$ passing through $A$ and parallel to $BC$ at point $P$. The bisectors of two angles between $\ell$ and $HP$ meet $BC$ at points $S$ and $T$. Prove that the circumcircles of triangles $ABC$ and $PST$ are tangent.
2006 Sharygin Geometry Olympiad, 26
Four cones are given with a common vertex and the same generatrix, but with, generally speaking, different radii of the bases. Each of them is tangent to two others. Prove that the four tangent points of the circles of the bases of the cones lie on the same circle.
Estonia Open Senior - geometry, 2013.1.4
Inside a circle $c$ there are circles $c_1, c_2$ and $c_3$ which are tangent to $c$ at points $A, B$ and $C$ correspondingly, which are all different. Circles $c_2$ and $c_3$ have a common point $K$ in the segment $BC$, circles $c_3$ and $c_1$ have a common point $L$ in the segment $CA$, and circles $c_1$ and $c_2$ have a common point $M$ in the segment $AB$. Prove that the circles $c_1, c_2$ and $c_3$ intersect in the center of the circle $c$.
2008 Indonesia TST, 3
Let $\Gamma_1$ and $\Gamma_2$ be two circles that tangents each other at point $N$, with $\Gamma_2$ located inside $\Gamma_1$. Let $A, B, C$ be distinct points on $\Gamma_1$ such that $AB$ and $AC$ tangents $\Gamma_2$ at $D$ and $E$, respectively. Line $ND$ cuts $\Gamma_1$ again at $K$, and line $CK$ intersects line $DE$ at $I$.
(i) Prove that $CK$ is the angle bisector of $\angle ACB$.
(ii) Prove that $IECN$ and $IBDN$ are cyclic quadrilaterals.
Kvant 2024, M2793
In acute triangle $ABC$ ($AB<AC$) point $O$ is center of its circumcircle $\Omega$. Let the tangent to $\Omega$ drawn at point $A$ intersect the line $BC$ at point $D$. Let the line $DO$ intersects the segments $AB$ and $AC$ at points $E$ and $F$, respectively. Point $G$ is constructed such that $AEGF$ is a parallelogram. Let $K$ and $H$ be points of intersection of segment $BC$ with segments $EG$ and $FG$, respectively. Prove that the circle $(GKH)$ touches the circle $\Omega$.
[i] Proposed by Dong Luu [/i]
1953 Moscow Mathematical Olympiad, 237
Three circles are pair-wise tangent to each other. Prove that the circle passing through the three tangent points is perpendicular to each of the initial three circles.
2003 Germany Team Selection Test, 2
Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.
Novosibirsk Oral Geo Oly IX, 2021.4
A semicircle of radius $5$ and a quarter of a circle of radius $8$ touch each other and are located inside the square as shown in the figure. Find the length of the part of the common tangent, enclosed in the same square.
[img]https://cdn.artofproblemsolving.com/attachments/f/2/010f501a7bc1d34561f2fe585773816f168e93.png[/img]
2010 Sharygin Geometry Olympiad, 7
Given triangle $ABC$. Lines $AL_a$ and $AM_a$ are the internal and the external bisectrix of angle $A$. Let $\omega_a$ be the reflection of the circumcircle of $\triangle AL_aM_a$ in the midpoint of $BC$. Circle $\omega_b$ is defined similarly. Prove that $\omega_a$ and $\omega_b$ touch if and only if $\triangle ABC$ is right-angled.
2022 Bundeswettbewerb Mathematik, 3
A circle $k$ touches a larger circle $K$ from inside in a point $P$. Let $Q$ be point on $k$ different from $P$. The line tangent to $k$ at $Q$ intersects $K$ in $A$ and $B$.
Show that the line $PQ$ bisects $\angle APB$.
1995 Belarus Team Selection Test, 2
Circles $S,S_1,S_2$ are given in a plane. $S_1$ and $S_2$ touch each other externally, and both touch $S$ internally at $A_1$ and $A_2$ respectively. The common internal tangent to $S_1$ and $S_2$ meets $S$ at $P$ and $Q.$ Let $B_1$ and $B_2$ be the intersections of $PA_1$ and $PA_2$ with $S_1$ and $S_2$, respectively. Prove that $B_1B_2$ is a common tangent to $S_1,S_2$
2015 Sharygin Geometry Olympiad, 1
Circles $\alpha$ and $\beta$ pass through point $C$. The tangent to $\alpha$ at this point meets $\beta$ at point $B$, and the tangent to $\beta$ at $C$ meets $\alpha$ at point $A$ so that $A$ and $B$ are distinct from $C$ and angle $ACB$ is obtuse. Line $AB$ meets $\alpha$ and $\beta$ for the second time at points $N$ and $M$ respectively. Prove that $2MN < AB$.
(D. Mukhin)
Cono Sur Shortlist - geometry, 2005.G2
Find the ratio between the sum of the areas of the circles and the area of the fourth circle that are shown in the figure
Each circle passes through the center of the previous one and they are internally tangent.
[img]https://cdn.artofproblemsolving.com/attachments/d/2/29d2be270f7bcf9aee793b0b01c2ef10131e06.jpg[/img]
2016 APMC, 1
Given triangle $ABC$ with the inner - bisector $AD$. The line passes through $D$ and perpendicular to $BC$ intersects the outer - bisector of $\angle BAC$ at $I$. Circle $(I,ID)$ intersects $CA$, $AB$ at $E$, $F$, reps. The symmedian line of $\triangle AEF$ intersects the circle $(AEF)$ at $X$. Prove that the circles $(BXC)$ and $(AEF)$ are tangent.
[Hide=Diagram] [asy]import graph; size(7.04cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 7.02, xmax = 14.06, ymin = -1.54, ymax = 4.08; /* image dimensions */
/* draw figures */
draw((8.62,3.12)--(7.58,-0.38));
draw((7.58,-0.38)--(13.68,-0.38));
draw((13.68,-0.38)--(8.62,3.12));
draw((8.62,3.12)--(9.85183961338573,3.5535510951732316));
draw((9.85183961338573,3.5535510951732316)--(9.851839613385732,-0.38));
draw((9.851839613385732,-0.38)--(8.62,3.12));
draw(circle((10.012708209519483,1.129702986881574), 2.4291805937992947));
draw((8.62,3.12)--(9.470868507287285,-1.238276762688951), red);
draw(shift((9.85183961338573,3.553551095173232))*xscale(3.9335510951732324)*yscale(3.9335510951732324)*arc((0,0),1,237.85842690125605,309.7357733435313), linetype("4 4"));
draw(shift((10.63,3.8274278922585725))*xscale(5.196628663716066)*yscale(5.196628663716066)*arc((0,0),1,234.06132677886183,305.9386732211382), blue);
/* dots and labels */
dot((8.62,3.12),linewidth(3.pt) + dotstyle);
label("$A$", (8.48,3.24), NE * labelscalefactor);
dot((7.58,-0.38),linewidth(3.pt) + dotstyle);
label("$B$", (7.3,-0.58), NE * labelscalefactor);
dot((13.68,-0.38),linewidth(3.pt) + dotstyle);
label("$C$", (13.76,-0.26), NE * labelscalefactor);
dot((9.851839613385732,-0.38),linewidth(3.pt) + dotstyle);
label("$D$", (9.94,-0.26), NE * labelscalefactor);
dot((9.85183961338573,3.5535510951732316),linewidth(3.pt) + dotstyle);
label("$I$", (9.94,3.68), NE * labelscalefactor);
dot((7.759138898806625,0.22287129406075654),linewidth(3.pt) + dotstyle);
label("$F$", (7.46,0.16), NE * labelscalefactor);
dot((12.36635458796946,0.5286480122740898),linewidth(3.pt) + dotstyle);
label("$E$", (12.44,0.64), NE * labelscalefactor);
dot((9.470868507287285,-1.238276762688951),linewidth(3.pt) + dotstyle);
label("$X$", (9.56,-1.12), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */ [/asy] [/Hide]
2018 Morocco TST., 3
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
2021 Yasinsky Geometry Olympiad, 6
In the circle $\omega$, we draw a chord $BC$, which is not a diameter. Point $A$ moves in a circle $\omega$. $H$ is the orthocenter triangle $ABC$. Prove that for any location of point $A$, a circle constructed on $AH$ as on diameter, touches two fixed circles $\omega_1$ and $\omega_2$.
(Dmitry Prokopenko)
Geometry Mathley 2011-12, 10.1
Let $ABC$ be a triangle with two angles $B,C$ not having the same measure, $I$ be its incircle, $(O)$ its circumcircle. Circle $(O_b)$ touches $BA,BC$ and is internally tangent to $(O)$ at $B_1$. Circle $(O_c)$ touches $CA,CB$ and is internally tangent to $(O)$ at $C_1$. Let $S$ be the intersection of $BC$ and $B_1C_1$. Prove that $\angle AIS = 90^o$.
Nguyễn Minh Hà
2020-IMOC, G1
Let $O$ be the circumcenter of triangle $ABC$. Choose a point $X$ on the circumcircle $\odot (ABC)$ such that $OX\parallel BC$. Assume that $\odot(AXO)$ intersects $AB, AC$ at $E, F$, respectively, and $OE, OF$ intersect $BC$ at $P, Q$, respectively. Furthermore, assume that $\odot(XP Q)$ and $\odot (ABC)$ intersect at $R$. Prove that $OR$ and $\odot (XP Q)$ are tangent to each other.
(ltf0501)
2021 Iran MO (3rd Round), 2
Given an acute triangle $ABC$, let $AD$ be an altitude and $H$ the orthocenter. Let $E$ denote the reflection of $H$ with respect to $A$. Point $X$ is chosen on the circumcircle of triangle $BDE$ such that $AC\| DX$ and point $Y$ is chosen on the circumcircle of triangle $CDE$ such that $DY\| AB$. Prove that the circumcircle of triangle $AXY$ is tangent to that of $ABC$.
III Soros Olympiad 1996 - 97 (Russia), 11.3
A chord $AB$ is drawn in a certain circle. The smaller of the two arcs $AB$ corresponds to a central angle of $120^o$. A tangent $p$ to this arc is drawn. Two circles with radii $R$ and $r$ are constructed, touching this smaller arc $AB$ and straight lines $AB$ and $p$. Find the radius of the original circle.
Geometry Mathley 2011-12, 8.4
Let $ABC$ a triangle inscribed in a circle $(O)$ with orthocenter $H$. Two lines $d_1$ and $d_2$ are mutually perpendicular at $H$. Let $d_1$ meet $BC,CA,AB$ at $X_1, Y_1,Z_1$ respectively. Let $A_1B_1C_1$ be a triangle formed by the line through $X_1$ perpendicular to $BC$, the line through $Y_1$ perpendicular to CA, the line through $Z_1$ perpendicular perpendicular to $AB$. Triangle $A_2B_2C_2$ is defined in the same manner. Prove that the circumcircles of triangles $A_1B_1C_1$ and $A_2B_2C_2$ touch each other at a point on $(O)$.
Nguyễn Văn Linh