Found problems: 280
1997 Estonia National Olympiad, 5
There are six small circles in the figure with a radius of $1$ and tangent to a large circle and the sides of the $ABC$ of an equilateral triangle, where touch points are $K, L$ and $M$ respectively with the midpoints of sides $AB, BC$ and $AC$. Find the radius of the large circle and the side of the triangle $ABC$.
[img]https://cdn.artofproblemsolving.com/attachments/3/0/f858dcc5840759993ea2722fd9b9b15c18f491.png[/img]
2025 Sharygin Geometry Olympiad, 15
A point $C$ lies on the bisector of an acute angle with vertex $S$. Let $P$, $Q$ be the projections of $C$ to the sidelines of the angle. The circle centered at $C$ with radius $PQ$ meets the sidelines at points $A$ and $B$ such that $SA\ne SB$. Prove that the circle with center $A$ touching $SB$ and the circle with center $B$ touching $SA$ are tangent.
Proposed by: A.Zaslavsky
2003 France Team Selection Test, 1
Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.
Indonesia MO Shortlist - geometry, g4
Given that two circles $\sigma_1$ and $\sigma_2$ internally tangent at $N$ so that $\sigma_2$ is inside $\sigma_1$. The points $Q$ and $R$ lies at $\sigma_1$ and $\sigma_2$, respectively, such that $N,R,Q$ are collinear. A line through $Q$ intersects $\sigma_2$ at $S$ and intersects $\sigma_1$ at $O$. The line through $N$ and $S$ intersects $\sigma_1$ at $P$. Prove that $$\frac{PQ^3}{PN^2} = \frac{PS \cdot RS}{NS}.$$
2023 4th Memorial "Aleksandar Blazhevski-Cane", P3
Let $ABCD$ be a cyclic quadrilateral inscribed in a circle $\omega$ with center $O$. The lines $AD$ and $BC$ meet at $E$, while the lines $AB$ and $CD$ meet at $F$. Let $P$ be a point on the segment $EF$ such that $OP \perp EF$. The circle $\Gamma_{1}$ passes through $A$ and $E$ and is tangent to $\omega$ at $A$, while $\Gamma_{2}$ passes through $C$ and $F$ and is tangent to $\omega$ at $C$. If $\Gamma_{1}$ and $\Gamma_{2}$ meet at $X$ and $Y$, prove that $PO$ is the bisector of $\angle XPY$.
[i]Proposed by Nikola Velov[/i]
2017 Oral Moscow Geometry Olympiad, 4
Prove that a circle constructed with the side $AB$ of a triangle $ABC$ as a diameter touches the inscribed circle of the triangle $ABC$ if and only if the side $AB$ is equal to the radius of the exircle on that side.
2015 German National Olympiad, 5
Let $ABCD$ be a convex quadrilateral such that the circle with diameter $AB$ touches the line $CD$. Prove that that the circle with diameter $CD$ touches the line $AB$ if and only if $BC$ and $AD$ are parallel.
2018 Kyiv Mathematical Festival, 2
Let $M$ be the intersection point of the medians $AD$ and $BE$ of a right triangle $ABC$ ($\angle C=90^\circ$), $\omega_1$ and $\omega_2$ be the circumcircles of triangles $AEM$ and $CDM.$ It is known that the circles $\omega_1$ and $\omega_2$ are tangent. Find the ratio in which the circle $\omega_2$ divides $AC.$
2018 India IMO Training Camp, 2
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
2012 Tournament of Towns, 4
A quadrilateral $ABCD$ with no parallel sides is inscribed in a circle. Two circles, one passing through $A$ and $B$, and the other through $C$ and $D$, are tangent to each other at $X$. Prove that the locus of $X$ is a circle.
2021 Saudi Arabia Training Tests, 17
Let $ABC$ be an acute, non-isosceles triangle with circumcenter $O$. Tangent lines to $(O)$ at $B,C$ meet at $T$. A line passes through $T$ cuts segments $AB$ at $D$ and cuts ray $CA$ at $E$. Take $M$ as midpoint of $DE$ and suppose that $MA$ cuts $(O)$ again at $K$. Prove that $(MKT)$ is tangent to $(O)$.
Estonia Open Senior - geometry, 2016.1.5
The bisector of the angle $A$ of the triangle $ABC$ intersects the side $BC$ at $D$. A circle $c$ through the vertex $A$ touches the side $BC$ at $D$. Prove that the circumcircle of the triangle $ABC$ touches the circle $c$ at $A$.
2005 Sharygin Geometry Olympiad, 17
A circle is inscribed in the triangle $ ABC$ and it's center $I$ and the points of tangency $P, Q, R$ with the sides $BC$, $C A$ and $AB$ are marked, respectively. With a single ruler, build a point $K$ at which the circle passing through the vertices B and $C$ touches (internally) the inscribed circle.
Geometry Mathley 2011-12, 6.3
Let $AB$ be an arbitrary chord of the circle $(O)$. Two circles $(X)$ and $(Y )$ are on the same side of the chord $AB$ such that they are both internally tangent to $(O)$ and they are tangent to $AB$ at $C,D$ respectively, $C$ is between $A$ and $D$. Let $H$ be the intersection of $XY$ and $AB, M$ the midpoint of arc $AB$ not containing $X$ and $Y$ . Let $HM$ meet $(O)$ again at $I$. Let $IX, IY$ intersect $AB$ again at $K, J$. Prove that the circumcircle of triangle $IKJ$ is tangent to $(O)$.
Nguyễn Văn Linh
2017 Ukrainian Geometry Olympiad, 4
Let $AD$ be the inner angle bisector of the triangle $ABC$. The perpendicular on the side $BC$ at the point $D$ intersects the outer bisector of $\angle CAB$ at point $I$. The circle with center $I$ and radius $ID$ intersects the sides $AB$ and $AC$ at points $F$ and $E$ respectively. $A$-symmedian of $\Delta AFE$ intersects the circumcircle of $\Delta AFE$ again at point $X$. Prove that the circumcircles of $\Delta AFE$ and $\Delta BXC$ are tangent.
1994 All-Russian Olympiad, 2
Two circles $S_1$ and $S_2$ touch externally at $F$. their external common tangent touches $S_1$ at $A$ and $S_2$ at $B$. A line, parallel to $AB$ and tangent to $S_2$ at $C$, intersects $S_1$ at $D$ and $E$. Prove that points $A,F,C$ are collinear.
(A. Kalinin)
XMO (China) 2-15 - geometry, 3.2
$ABCD$ is inscribed in unit circle $\Gamma$. Let $\Omega_1$, $\Omega_2$ be the circumcircles of $\vartriangle ABD$, $\vartriangle CBD$ respectively. Circles $\Omega_1$, $\Omega_2$ are tangent to segment $BD$ at $M$,$N$ respectively. Line A$M$ intersects $\Gamma$, $\Omega_1$ again at points $X_1$,$X_2$ respectively (different from $A$, $M$). Let $\omega_1$ be the circle passing through $X_1$, $X_2$ and tangent to $\Omega_1$. Line $CN$ intersects $\Gamma$, $\Omega_2$ again at points $Y_1$, $Y_2$ respectively (different from $C$, $N$). Let $\omega_2$ be the circle passing through $Y_1$, $Y_2$ and tangent to $\Omega_2$. Circles $\Omega_1$,$\Omega_2$, $\omega_1$, $\omega_2$ have radii $R_1$, $R_2$, $r_1$, $r_2$ respectively. Prove that $$r_1+r_2-R_1-R_2=1.$$
[img]https://cdn.artofproblemsolving.com/attachments/1/5/70471f2419fadc4b2183f5fe74f0c7a2e69ed4.png[/img]
[url=https://www.geogebra.org/m/vxx8ghww]geogebra file[/url]
2021 Brazil National Olympiad, 6
Let \(n \geq 5\) be integer. The convex polygon \(P = A_{1} A_{2} \ldots A_{n}\) is bicentric, that is, it has an inscribed and circumscribed circle. Set \(A_{i+n}=A_{i}\) to every integer \(i\) (that is, all indices are taken modulo \(n\)). Suppose that for all \(i, 1 \leq i \leq n\), the rays \(A_{i-1} A_{i}\) and \(A_{i+2} A_{i+1}\) meet at the point \(B_{i}\). Let \(\omega_{i}\) be the circumcircle of \(B_{i} A_{i} A_{i+1}\). Prove that there is a circle tangent to all \(n\) circles \(\omega_{i}\), \(1 \leq i \leq n\).
Denmark (Mohr) - geometry, 1998.1
In the figure shown, the small circles have radius $1$. Calculate the area of the gray part of the figure.
[img]https://1.bp.blogspot.com/-oy-WirJ6u9o/XzcFc3roVDI/AAAAAAAAMX8/qxNy5I_0RWUOxl-ZE52fnrwo0v0T7If9QCLcBGAsYHQ/s0/1998%2BMohr%2Bp1.png[/img]
2016 Saudi Arabia Pre-TST, 1.1
Let $ABC$ be an acute, non isosceles triangle, $AX, BY, CZ$ are the altitudes with $X, Y, Z$ belong to $BC, CA,AB$ respectively. Respectively denote $(O_1), (O_2), (O_3)$ as the circumcircles of triangles $AY Z, BZX, CX Y$ . Suppose that $(K)$ is a circle that internal tangent to $(O_1), (O_2), (O_3)$. Prove that $(K)$ is tangent to circumcircle of triangle $ABC$.
2021 SYMO, Q4
Let $ABC$ be an acute-angled triangle. The tangents to the circumcircle of triangle $ABC$ at $B$ and $C$ respectively meet at $D$. The circumcircles of triangles $ABD$ and $ACD$ meet line $BC$ at additional points $E$ and $F$ respectively. Lines $DB$ and $DC$ meet the circumcircle of triangle $DEF$ at additional points $X$ and $Y$ respectively. Let $O$ be the circumcentre of triangle $DEF$. Prove that the circumcircles of triangles $ABC$ and $OXY$ are tangent to each other.
2000 Abels Math Contest (Norwegian MO), 4
For some values of c, the equation $x^c + y^c = z^c$ can be illustrated geometrically.
For example, the case $c = 2$ can be illustrated by a right-angled triangle. By this we mean that, x, y, z is a solution of the equation $x^2 + y^2 = z^2$ if and only if there exists a right-angled triangle with catheters $x$ and $y$ and hypotenuse $z$.
In this problem we will look at the cases $c = -\frac{1}{2}$ and $c = - 1$.
a) Let $x, y$ and $z$ be the radii of three circles intersecting each other and a line, as shown, in the figure. Show that,
$x^{-\frac{1}{2}}+ y^{-\frac{1}{2}} = z^{-\frac{1}{2}}$
[img]https://cdn.artofproblemsolving.com/attachments/5/7/5315e33e1750a3a49ae11e1b5527311117ce70.png[/img]
b) Draw a geometric figure that illustrates the case in a similar way, $c = - 1$. The figure must be able to be constructed with a compass and a ruler. Describe such a construction and prove that, in the figure, lines $x, y$ and $z$ satisfy $x^{-1}+ y^{-1} = z^{-1}$. (All positive solutions of this equation should be possible values for $x, y$, and $z$ on such a figure, but you don't have to prove that.)
1972 Spain Mathematical Olympiad, 6
Given three circumferences of radii $r$ , $r'$ and $r''$ , each tangent externally to the other two, calculate the radius of the circle inscribed in the triangle whose vertices are their three centers.
2023 Sharygin Geometry Olympiad, 17
A common external tangent to circles $\omega_1$ and $\omega_2$ touches them at points $T_1, T_2$ respectively. Let $A$ be an arbitrary point on the extension of $T_1T_2$ beyond $T_1$, and $B$ be a point on the extension of $T_1T_2$ beyond $T_2$ such that $AT_1 = BT_2$. The tangents from $A$ to $\omega_1$ and from $B$ to $\omega_2$ distinct from $T_1T_2$ meet at point $C$. Prove that all nagelians of triangles $ABC$ from $C$ have a common point.
1997 Rioplatense Mathematical Olympiad, Level 3, 4
Circles $c_1$ and $c_2$ are tangent internally to circle $c$ at points $A$ and $B$ , respectively, as seen in the figure. The inner tangent common to $c_1$ and $c_2$ touches these circles in $P$ and $Q$ , respectively. Show that the $AP$ and $BQ$ lines intersect the circle $c$ at diametrically opposite points.
[img]https://cdn.artofproblemsolving.com/attachments/0/a/9490a4d7ba2038e490a858b14ba21d07377c5d.gif[/img]