This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 619

2009 Polish MO Finals, 5

A sphere is inscribed in tetrahedron $ ABCD$ and is tangent to faces $ BCD,CAD,ABD,ABC$ at points $ P,Q,R,S$ respectively. Segment $ PT$ is the sphere's diameter, and lines $ TA,TQ,TR,TS$ meet the plane $ BCD$ at points $ A',Q',R',S'$. respectively. Show that $ A$ is the center of a circumcircle on the triangle $ S'Q'R'$.

1962 Swedish Mathematical Competition, 5

Find the largest cube which can be placed inside a regular tetrahedron with side $1$ so that one of its faces lies on the base of the tetrahedron.

2008 Princeton University Math Competition, A9

In tetrahedron $ABCD$ with circumradius $2$, $AB = 2$, $CD = \sqrt{7}$, and $\angle ABC = \angle BAD = \frac{\pi}{2}$. Find all possible angles between the planes containing $ABC$ and $ABD$.

2006 All-Russian Olympiad Regional Round, 11.6

In the tetrahedron $ABCD$, perpendiculars $AB'$, $AC'$, $AD'$ are dropped from vertex $A$, on the plane dividing the dihedral angles at the edges $CD$, $BD$, $BC$ in half. Prove that the plane $(B'C'D' )$ is parallel to the plane $(BCD)$.

1988 China National Olympiad, 5

Given three tetrahedrons $A_iB_i C_i D_i$ ($i=1,2,3$), planes $\alpha _i,\beta _i,\gamma _i$ ($i=1,2,3$) are drawn through $B_i ,C_i ,D_i$ respectively, and they are perpendicular to edges $A_i B_i, A_i C_i, A_i D_i$ ($i=1,2,3$) respectively. Suppose that all nine planes $\alpha _i,\beta _i,\gamma _i$ ($i=1,2,3$) meet at a point $E$, and points $A_1,A_2,A_3$ lie on line $l$. Determine the intersection (shape and position) of the circumscribed spheres of the three tetrahedrons.

2001 All-Russian Olympiad, 4

A sphere with center on the plane of the face $ABC$ of a tetrahedron $SABC$ passes through $A$, $B$ and $C$, and meets the edges $SA$, $SB$, $SC$ again at $A_1$, $B_1$, $C_1$, respectively. The planes through $A_1$, $B_1$, $C_1$ tangent to the sphere meet at $O$. Prove that $O$ is the circumcenter of the tetrahedron $SA_1B_1C_1$.

1957 Kurschak Competition, 1

$ABC$ is an acute-angled triangle. $D$ is a variable point in space such that all faces of the tetrahedron $ABCD$ are acute-angled. $P$ is the foot of the perpendicular from $D$ to the plane $ABC$. Find the locus of $P$ as $D$ varies.

1969 IMO Shortlist, 12

$(CZS 1)$ Given a unit cube, find the locus of the centroids of all tetrahedra whose vertices lie on the sides of the cube.

1951 Moscow Mathematical Olympiad, 205

Among all orthogonal projections of a regular tetrahedron to all possible planes, find the projection of the greatest area.

1982 Canada National Olympiad, 5

The altitudes of a tetrahedron $ABCD$ are extended externally to points $A'$, $B'$, $C'$, and $D'$, where $AA' = k/h_a$, $BB' = k/h_b$, $CC' = k/h_c$, and $DD' = k/h_d$. Here, $k$ is a constant and $h_a$ denotes the length of the altitude of $ABCD$ from vertex $A$, etc. Prove that the centroid of tetrahedron $A'B'C'D'$ coincides with the centroid of $ABCD$.

2021 Abels Math Contest (Norwegian MO) Final, 4a

A tetrahedron $ABCD$ satisfies $\angle BAC=\angle CAD=\angle DAB=90^o$. Show that the areas of its faces satisfy the equation $area(BAC)^2 + area(CAD)^2 + area(DAB)^2 = area(BCD)^2$. .

2006 Harvard-MIT Mathematics Tournament, 9

Four spheres, each of radius $r$, lie inside a regular tetrahedron with side length $1$ such that each sphere is tangent to three faces of the tetrahedron and to the other three spheres. Find $r$.

1979 AMC 12/AHSME, 23

The edges of a regular tetrahedron with vertices $A ,~ B,~ C$, and $D$ each have length one. Find the least possible distance between a pair of points $P$ and $Q$, where $P$ is on edge $AB$ and $Q$ is on edge $CD$. $\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{3}{4}\qquad\textbf{(C) }\frac{\sqrt{2}}{2}\qquad\textbf{(D) }\frac{\sqrt{3}}{2}\qquad\textbf{(E) }\frac{\sqrt{3}}{3}$ [asy] size(150); import patterns; pair D=(0,0),C=(1,-1),B=(2.5,-0.2),A=(1,2),AA,BB,CC,DD,P,Q,aux; add("hatch",hatch()); //AA=new A and etc. draw(rotate(100,D)*(A--B--C--D--cycle)); AA=rotate(100,D)*A; BB=rotate(100,D)*D; CC=rotate(100,D)*C; DD=rotate(100,D)*B; aux=midpoint(AA--BB); draw(BB--DD); P=midpoint(AA--aux); aux=midpoint(CC--DD); Q=midpoint(CC--aux); draw(AA--CC,dashed); dot(P); dot(Q); fill(DD--BB--CC--cycle,pattern("hatch")); label("$A$",AA,W); label("$B$",BB,S); label("$C$",CC,E); label("$D$",DD,N); label("$P$",P,S); label("$Q$",Q,E); //Credit to TheMaskedMagician for the diagram [/asy]

2014 Moldova Team Selection Test, 1

Prove that there do not exist $4$ points in the plane such that the distances between any pair of them is an odd integer.

1970 IMO Shortlist, 3

In the tetrahedron $ABCD,\angle BDC=90^o$ and the foot of the perpendicular from $D$ to $ABC$ is the intersection of the altitudes of $ABC$. Prove that: \[ (AB+BC+CA)^2\le6(AD^2+BD^2+CD^2). \] When do we have equality?

2000 Romania National Olympiad, 3

Let be a tetahedron $ ABCD, $ and $ E $ be the projection of $ D $ on the plane formed by $ ABC. $ If $ \mathcal{A}_{\mathcal{R}} $ denotes the area of the region $ \mathcal{R}, $ show that the following affirmations are equivalent: [b]a)[/b] $ C=E\vee CE\parallel AB $ [b]b)[/b] $ M\in\overline{CD}\implies\mathcal{A}_{ABM}^2=\frac{CM^2}{CD^2}\cdot\mathcal{A}_{ABD}^2 +\left( 1-\frac{CM^2}{CD^2}\right)\cdot\mathcal{A}_{ABC}^2 $

1981 Tournament Of Towns, (012) 1

We will say that two pyramids touch each other by faces if they have no common interior points and if the intersection of a face of one of them with a face of the other is either a triangle or a polygon. Is it possible to place $8$ tetrahedra in such a way that every two of them touch each other by faces? (A Andjans, Riga)

1994 Flanders Math Olympiad, 3

Two regular tetrahedrons $A$ and $B$ are made with the 8 vertices of a unit cube. (this way is unique) What's the volume of $A\cup B$?

2012 Today's Calculation Of Integral, 797

In the $xyz$-space take four points $P(0,\ 0,\ 2),\ A(0,\ 2,\ 0),\ B(\sqrt{3},-1,\ 0),\ C(-\sqrt{3},-1,\ 0)$. Find the volume of the part satifying $x^2+y^2\geq 1$ in the tetrahedron $PABC$. 50 points

1977 IMO Longlists, 48

The intersection of a plane with a regular tetrahedron with edge $a$ is a quadrilateral with perimeter $P.$ Prove that $2a \leq P \leq 3a.$

1988 Bulgaria National Olympiad, Problem 3

Let $M$ be an arbitrary interior point of a tetrahedron $ABCD$, and let $S_A,S_B,S_C,S_D$ be the areas of the faces $BCD,ACD,ABD,ABC$, respectively. Prove that $$S_A\cdot MA+S_B\cdot MB+S_C\cdot MC+S_D\cdot MD\ge9V,$$where $V$ is the volume of $ABCD$. When does equality hold?

2003 All-Russian Olympiad, 4

The inscribed sphere of a tetrahedron $ABCD$ touches $ABC,ABD,ACD$ and $BCD$ at $D_1,C_1,B_1$ and $A_1$ respectively. Consider the plane equidistant from $A$ and plane $B_1C_1D_1$ (parallel to $B_1C_1D_1$) and the three planes defined analogously for the vertices $B,C,D$. Prove that the circumcenter of the tetrahedron formed by these four planes coincides with the circumcenter of tetrahedron of $ABCD$.

1986 National High School Mathematics League, 4

None face of a tetrahedron is isosceles triangle. How many kinds of lengths of edges do the tetrahedron have at least? $\text{(A)}3\qquad\text{(B)}4\qquad\text{(C)}5\qquad\text{(D)}6$

1998 Czech And Slovak Olympiad IIIA, 3

A sphere is inscribed in a tetrahedron $ABCD$. The tangent planes to the sphere parallel to the faces of the tetrahedron cut off four smaller tetrahedra. Prove that sum of all the $24$ edges of the smaller tetrahedra equals twice the sum of edges of the tetrahedron $ABCD$.

2009 Romanian Masters In Mathematics, 3

Given four points $ A_1, A_2, A_3, A_4$ in the plane, no three collinear, such that \[ A_1A_2 \cdot A_3 A_4 \equal{} A_1 A_3 \cdot A_2 A_4 \equal{} A_1 A_4 \cdot A_2 A_3, \] denote by $ O_i$ the circumcenter of $ \triangle A_j A_k A_l$ with $ \{i,j,k,l\} \equal{} \{1,2,3,4\}.$ Assuming $ \forall i A_i \neq O_i ,$ prove that the four lines $ A_iO_i$ are concurrent or parallel. [i]Nikolai Ivanov Beluhov, Bulgaria[/i]