Found problems: 844
2022 Iranian Geometry Olympiad, 2
An isosceles trapezoid $ABCD$ $(AB \parallel CD)$ is given. Points $E$ and $F$ lie on the
sides $BC$ and $AD$, and the points $M$ and $N$ lie on the segment $EF$ such that $DF = BE$ and
$FM = NE$. Let $K$ and $L$ be the foot of perpendicular lines from $M$ and $N$ to $AB$ and $CD$, respectively. Prove that $EKFL$ is a parallelogram.
[i]Proposed by Mahdi Etesamifard[/i]
2019 Romania National Olympiad, 2
Find the number of trapeziums that it can be formed with the vertices of a regular polygon.
2014 AMC 10, 21
Trapezoid $ABCD$ has parallel sides $\overline{AB}$ or length $33$ and $\overline{CD}$ of length $21$. The other two sides are of lengths $10$ and $14$. The angles at $A$ and $B$ are acute. What is the length of the shorter diagonal of $ABCD$?
$ \textbf {(A) } 10\sqrt{6} \qquad \textbf {(B) } 25 \qquad \textbf {(C) } 8\sqrt{10} \qquad \textbf {(D) } 18\sqrt{2} \qquad \textbf {(E) } 26 $
1989 Bundeswettbewerb Mathematik, 2
A trapezoid has area $2\, m^2$ and the sum of its diagonals is $4\,m$. Determine the height of this trapezoid.
1987 IMO Longlists, 61
Let $PQ$ be a line segment of constant length $\lambda$ taken on the side $BC$ of a triangle $ABC$ with the order $B,P,Q,C$, and let the lines through $P$ and $Q$ parallel to the lateral sides meet $AC$ at $P_1$ and $Q_1$ and $AB$ at $P_2$ and $Q_2$ respectively. Prove that the sum of the areas of the trapezoids $PQQ_1P_1$ and $PQQ_2P_2$ is independent of the position of $PQ$ on $BC.$
2003 AMC 8, 9
$\textbf{Bake Sale}$
Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies differ, as shown.
$\circ$ Art's cookies are trapezoids:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(5,0)--(5,3)--(2,3)--cycle);
draw(rightanglemark((5,3), (5,0), origin));
label("5 in", (2.5,0), S);
label("3 in", (5,1.5), E);
label("3 in", (3.5,3), N);[/asy]
$\circ$ Roger's cookies are rectangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(4,0)--(4,2)--(0,2)--cycle);
draw(rightanglemark((4,2), (4,0), origin));
draw(rightanglemark((0,2), origin, (4,0)));
label("4 in", (2,0), S);
label("2 in", (4,1), E);[/asy]
$\circ$ Paul's cookies are parallelograms:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle);
draw((2.5,2)--(2.5,0), dashed);
draw(rightanglemark((2.5,2),(2.5,0), origin));
label("3 in", (1.5,0), S);
label("2 in", (2.5,1), W);[/asy]
$\circ$ Trisha's cookies are triangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(3,4)--cycle);
draw(rightanglemark((3,4),(3,0), origin));
label("3 in", (1.5,0), S);
label("4 in", (3,2), E);[/asy]
Each friend uses the same amount of dough, and Art makes exactly 12 cookies. Art's cookies sell for 60 cents each. To earn the same amount from a single batch, how much should one of Roger's cookies cost in cents?
$ \textbf{(A)}\ 18\qquad\textbf{(B)}\ 25\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 75\qquad\textbf{(E)}\ 90$
2004 CentroAmerican, 2
Let $ABCD$ be a trapezium such that $AB||CD$ and $AB+CD=AD$. Let $P$ be the point on $AD$ such that $AP=AB$ and $PD=CD$.
$a)$ Prove that $\angle BPC=90^{\circ}$.
$b)$ $Q$ is the midpoint of $BC$ and $R$ is the point of intersection between the line $AD$ and the circle passing through the points $B,A$ and $Q$. Show that the points $B,P,R$ and $C$ are concyclic.
2022 Oral Moscow Geometry Olympiad, 1
Given an isosceles trapezoid $ABCD$. The bisector of angle $B$ intersects the base $AD$ at point $L$. Prove that the center of the circle circumscribed around triangle $BLD$ lies on the circle circumscribed around the trapezoid.
(Yu. Blinkov)
1979 USAMO, 4
Show how to construct a chord $BPC$ of a given angle $A$ through a given point $P$ such that $\tfrac{1}{BP}\plus{} \tfrac{1}{PC}$ is a maximum.
[asy]
size(200);
defaultpen(linewidth(0.7));
pair A = origin, B = (5,0), C = (4.2,3), P = waypoint(B--C,0.65);
pair Bp = 1.3 * B, Cp = 1.2 * C;
draw(A--B--C--A^^Bp--A--Cp);
dot(P);
label("$A$",A,W);
label("$B$",B,S);
label("$C$",C,dir(B--C));
label("$P$",P,dir(A--P));
[/asy]
2009 Germany Team Selection Test, 1
Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$.
[i]Proposed by Charles Leytem, Luxembourg[/i]
May Olympiad L1 - geometry, 2001.2
Let's take a $ABCD$ rectangle of paper; the side $AB$ measures $5$ cm and the side $BC$ measures $9$ cm.
We do three folds:
1.We take the $AB$ side on the $BC$ side and call $P$ the point on the $BC$ side that coincides with $A$.
A right trapezoid $BCDQ$ is then formed.
2. We fold so that $B$ and $Q$ coincide. A $5$-sided polygon $RPCDQ$ is formed.
3. We fold again by matching $D$ with $C$ and $Q$ with $P$. A new right trapezoid $RPCS$.
After making these folds, we make a cut perpendicular to $SC$ by its midpoint $T$, obtaining the right trapezoid $RUTS$.
Calculate the area of the figure that appears as we unfold the last trapezoid $RUTS$.
2007 Princeton University Math Competition, 10
In triangle $ABC$ with $AB \neq AC$, points $N \in CA$, $M \in AB$, $P \in BC$, and $Q \in BC$ are chosen such that $MP \parallel AC$, $NQ \parallel AB$, $\frac{BP}{AB} = \frac{CQ}{AC}$, and $A, M, Q, P, N$ are concyclic. Find $\angle BAC$.
1980 Czech And Slovak Olympiad IIIA, 2
Find the side sizes of an isosceles trapezoid that has longest side $13$ cm, perimeter $28$ cm and area $27$ cm$^2$. Is there such a trapezoid, if we we ask for area $27.001$ cm$^2$ ?
2014 India Regional Mathematical Olympiad, 6
Let $D,E,F$ be the points of contact of the incircle of an acute-angled triangle $ABC$ with $BC,CA,AB$ respectively. Let $I_1,I_2,I_3$ be the incentres of the triangles $AFE, BDF, CED$, respectively. Prove that the lines $I_1D, I_2E, I_3F$ are concurrent.
2010 AIME Problems, 13
Rectangle $ ABCD$ and a semicircle with diameter $ AB$ are coplanar and have nonoverlapping interiors. Let $ \mathcal{R}$ denote the region enclosed by the semicircle and the rectangle. Line $ \ell$ meets the semicircle, segment $ AB$, and segment $ CD$ at distinct points $ N$, $ U$, and $ T$, respectively. Line $ \ell$ divides region $ \mathcal{R}$ into two regions with areas in the ratio $ 1: 2$. Suppose that $ AU \equal{} 84$, $ AN \equal{} 126$, and $ UB \equal{} 168$. Then $ DA$ can be represented as $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.
2014 Dutch IMO TST, 3
Let $H$ be the orthocentre of an acute triangle $ABC$. The line through $A$ perpendicular to $AC$ and the line through $B$ perpendicular to $BC$ intersect in $D$. The circle with centre $C$ through $H$ intersects the circumcircle of triangle $ABC$ in the points $E$ and $F$. Prove that $|DE| = |DF| = |AB|$.
2011 USAJMO, 5
Points $A,B,C,D,E$ lie on a circle $\omega$ and point $P$ lies outside the circle. The given points are such that (i) lines $PB$ and $PD$ are tangent to $\omega$, (ii) $P, A, C$ are collinear, and (iii) $DE \parallel AC$. Prove that $BE$ bisects $AC$.
2012 India IMO Training Camp, 1
Let $ABCD$ be a trapezium with $AB\parallel CD$. Let $P$ be a point on $AC$ such that $C$ is between $A$ and $P$; and let $X, Y$ be the midpoints of $AB, CD$ respectively. Let $PX$ intersect $BC$ in $N$ and $PY$ intersect $AD$ in $M$. Prove that $MN\parallel AB$.
II Soros Olympiad 1995 - 96 (Russia), 11.6
The bases of the trapezoid are equal to $a$ and $b$. It is known that through the midpoint of one of its sides it is possible to draw a straight line dividing the trapezoid into two quadrangles, into each of which a circle can be inscribed. Find the length of the other side of this trapezoid.
2000 Tournament Of Towns, 2
In a quadrilateral $ABCD$ of area $1$, the parallel sides $BC$ and $AD$ are in the ratio $1 :2$ . $K$ is the midpoint of the diagonal $AC$ and $L$ is the point of intersection of the line $DK$ and the side $AB$. Determine the area of the quadrilateral $BCKL$ .
(M G Sonkin)
2014 Sharygin Geometry Olympiad, 10
Two disjoint circles $\omega_1$ and $\omega_2$ are inscribed into an angle. Consider all pairs of parallel lines $l_1$ and $l_2$ such that $l_1$ touches $\omega_1$ and $l_2$ touches $\omega_2$ ($\omega_1$, $\omega_2$ lie between $l_1$ and $l_2$). Prove that the medial lines of all trapezoids formed by $l_1$ and $l_2$ and the sides of the angle touch some fixed circle.
2010 Dutch BxMO TST, 1
Let $ABCD$ be a trapezoid with $AB // CD$, $2|AB| = |CD|$ and $BD \perp BC$. Let $M$ be the midpoint of $CD$ and let $E$ be the intersection $BC$ and $AD$. Let $O$ be the intersection of $AM$ and $BD$. Let $N$ be the intersection of $OE$ and $AB$.
(a) Prove that $ABMD$ is a rhombus.
(b) Prove that the line $DN$ passes through the midpoint of the line segment $BE$.
1997 Chile National Olympiad, 3
Let $ ABCD $ be a quadrilateral, whose diagonals intersect at $ O $. The triangles $ \triangle AOB $, $ \triangle BOC $, $ \triangle COD $ have areas $1, 2, 4$, respectively. Find the area of $ \triangle AOD $ and prove that $ ABCD $ is a trapezoid.
2006 CentroAmerican, 2
Let $\Gamma$ and $\Gamma'$ be two congruent circles centered at $O$ and $O'$, respectively, and let $A$ be one of their two points of intersection. $B$ is a point on $\Gamma$, $C$ is the second point of intersection of $AB$ and $\Gamma'$, and $D$ is a point on $\Gamma'$ such that $OBDO'$ is a parallelogram. Show that the length of $CD$ does not depend on the position of $B$.
Ukraine Correspondence MO - geometry, 2011.7
Let $ABCD$ be a trapezoid in which $AB \parallel CD$ and $AB = 2CD$. A line $\ell$ perpendicular to $CD$ was drawn through point $C$. A circle with center at point $D$ and radius $DA$ intersects line $\ell$ at points $P$ and $Q$. Prove that $AP \perp BQ$.