This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 844

2014 Baltic Way, 12

Triangle $ABC$ is given. Let $M$ be the midpoint of the segment $AB$ and $T$ be the midpoint of the arc $BC$ not containing $A$ of the circumcircle of $ABC.$ The point $K$ inside the triangle $ABC$ is such that $MATK$ is an isosceles trapezoid with $AT\parallel MK.$ Show that $AK = KC.$

Kyiv City MO Seniors Round2 2010+ geometry, 2021.10.4.1

Let $ABCD$ be an isosceles trapezoid, $AD=BC$, $AB \parallel CD$. The diagonals of the trapezoid intersect at the point $O$, and the point $M$ is the midpoint of the side $AD$. The circle circumscribed around the triangle $BCM$ intersects the side $AD$ at the point $K$. Prove that $OK \parallel AB$.

2022 Moldova EGMO TST, 11

Let there be a trapezoid $ABCD$ with bases $AD$ and $BC$. Points $M$ and $P$ are on sides $AB$ and $CD$ such that $CM$ and $BP$ intersect in $N$ and the pentagon $AMNPD$ is cyclic. Prove that the triangle $ADN$ is isosceles.

2005 IMO Shortlist, 6

Let $ABC$ be a triangle, and $M$ the midpoint of its side $BC$. Let $\gamma$ be the incircle of triangle $ABC$. The median $AM$ of triangle $ABC$ intersects the incircle $\gamma$ at two points $K$ and $L$. Let the lines passing through $K$ and $L$, parallel to $BC$, intersect the incircle $\gamma$ again in two points $X$ and $Y$. Let the lines $AX$ and $AY$ intersect $BC$ again at the points $P$ and $Q$. Prove that $BP = CQ$.

1998 AMC 12/AHSME, 26

In quadrilateral $ ABCD$, it is given that $ \angle A \equal{} 120^\circ$, angles $ B$ and $ D$ are right angles, $ AB \equal{} 13$, and $ AD \equal{} 46$. Then $ AC \equal{}$ $ \textbf{(A)}\ 60 \qquad \textbf{(B)}\ 62 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 65 \qquad \textbf{(E)}\ 72$

2009 Argentina National Olympiad, 3

Isosceles trapezoid $ ABCD$, with $ AB \parallel CD$, is such that there exists a circle $ \Gamma$ tangent to its four sides. Let $ T \equal{} \Gamma \cap BC$, and $ P \equal{} \Gamma \cap AT$ ($ P \neq T$). If $ \frac{AP}{AT} \equal{} \frac{2}{5}$, compute $ \frac{AB}{CD}$.

1974 All Soviet Union Mathematical Olympiad, 192

Given two circles with the radiuses $R$ and $r$, touching each other from the outer side. Consider all the trapezoids, such that its lateral sides touch both circles, and its bases touch different circles. Find the shortest possible lateral side.

2006 AIME Problems, 7

An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region $\mathcal{C}$ to the area of shaded region $\mathcal{B}$ is $11/5$. Find the ratio of shaded region $\mathcal{D}$ to the area of shaded region $\mathcal{A}$. [asy] defaultpen(linewidth(0.7)+fontsize(10)); for(int i=0; i<4; i=i+1) { fill((2*i,0)--(2*i+1,0)--(2*i+1,6)--(2*i,6)--cycle, mediumgray); } pair A=(1/3,4), B=A+7.5*dir(-17), C=A+7*dir(10); draw(B--A--C); fill((7.3,0)--(7.8,0)--(7.8,6)--(7.3,6)--cycle, white); clip(B--A--C--cycle); for(int i=0; i<9; i=i+1) { draw((i,1)--(i,6)); } label("$\mathcal{A}$", A+0.2*dir(-17), S); label("$\mathcal{B}$", A+2.3*dir(-17), S); label("$\mathcal{C}$", A+4.4*dir(-17), S); label("$\mathcal{D}$", A+6.5*dir(-17), S);[/asy]

2021 CCA Math Bonanza, I12

Let $ABC$ be a triangle, let the $A$-altitude meet $BC$ at $D$, let the $B$-altitude meet $AC$ at $E$, and let $T\neq A$ be the point on the circumcircle of $ABC$ such that $AT || BC$. Given that $D,E,T$ are collinear, if $BD=3$ and $AD=4$, then the area of $ABC$ can be written as $a+\sqrt{b}$, where $a$ and $b$ are positive integers. What is $a+b$? [i]2021 CCA Math Bonanza Individual Round #12[/i]

2015 Oral Moscow Geometry Olympiad, 3

Tags: trapezoid , area , geometry
$O$ is the intersection point of the diagonals of the trapezoid $ABCD$. A line passing through $C$ and a point symmetric to $B$ with respect to $O$, intersects the base $AD$ at the point $K$. Prove that $S_{AOK} = S_{AOB} + S_{DOK}$.

Kvant 2023, M2759

The diagonals $AC{}$ and $BD$ of the trapezoid $ABCD$ intersect at $E{}.$ The bisector of the angle $BEC$ intersects the bases $BC$ and $AD$ at $X{}$ and $Z{}$. The perpendicular bisector of the segment $XZ$ intersects the sides $AB$ and $CD$ at $Y{}$ and $T{}$. Prove that $XYZT{}$ is a rhombus. [i]Proposed by M. Didin, I. Kukharchuk and P. Puchkov[/i]

2023 Novosibirsk Oral Olympiad in Geometry, 4

In a trapezoid, the length of one of the diagonals is equal to the sum of the lengths of the bases, and the angle between the diagonals is $60$ degrees. Prove that this trapezoid is isosceles.

1999 USAMO, 6

Let $ABCD$ be an isosceles trapezoid with $AB \parallel CD$. The inscribed circle $\omega$ of triangle $BCD$ meets $CD$ at $E$. Let $F$ be a point on the (internal) angle bisector of $\angle DAC$ such that $EF \perp CD$. Let the circumscribed circle of triangle $ACF$ meet line $CD$ at $C$ and $G$. Prove that the triangle $AFG$ is isosceles.

2008 Bosnia and Herzegovina Junior BMO TST, 3

Point $ M$ is given in the interior of parallelogram $ ABCD$, and the point $ N$ inside triangle $ AMD$ is chosen so that $ < MNA \plus{} < MCB \equal{} MND \plus{} < MBC \equal{} 180^0$. Prove that $ MN$ is parallel to $ AB$.

2006 Moldova National Olympiad, 10.3

A convex quadrilateral $ ABCD$ is inscribed in a circle. The tangents to the circle through $ A$ and $ C$ intersect at a point $ P$, such that this point $ P$ does not lie on $ BD$, and such that $ PA^{2}=PB\cdot PD$. Prove that the line $ BD$ passes through the midpoint of $ AC$.

2022 Serbia Team Selection Test, P6

Let $ABCD$ be a trapezoid with bases $AB,CD$ such that $CD=k \cdot AB$ ($0<k<1$). Point $P$ is such that $\angle PAB=\angle CAD$ and $\angle PBA=\angle DBC$. Prove that $PA+PB \leq \dfrac{1}{\sqrt{1-k^2}} \cdot AB$.

2011 Sharygin Geometry Olympiad, 10

The diagonals of trapezoid $ABCD$ meet at point $O$. Point $M$ of lateral side $CD$ and points $P, Q$ of bases $BC$ and $AD$ are such that segments $MP$ and $MQ$ are parallel to the diagonals of the trapezoid. Prove that line $PQ$ passes through point $O$.

2020 Serbia National Math Olympiad, 4

In a trapezoid $ABCD$ such that the internal angles are not equal to $90^{\circ}$, the diagonals $AC$ and $BD$ intersect at the point $E$. Let $P$ and $Q$ be the feet of the altitudes from $A$ and $B$ to the sides $BC$ and $AD$ respectively. Circumscribed circles of the triangles $CEQ$ and $DEP$ intersect at the point $F\neq E$. Prove that the lines $AP$, $BQ$ and $EF$ are either parallel to each other, or they meet at exactly one point.

2006 Baltic Way, 15

Let the medians of the triangle $ABC$ intersect at point $M$. A line $t$ through $M$ intersects the circumcircle of $ABC$ at $X$ and $Y$ so that $A$ and $C$ lie on the same side of $t$. Prove that $BX\cdot BY=AX\cdot AY+CX\cdot CY$.

1982 Dutch Mathematical Olympiad, 2

In a triangle $ ABC$, $ M$ is the midpoint of $ AB$ and $ P$ an arbitrary point on side $ AC$. Using only a straight edge, construct point $ Q$ on $ BC$ such that $ P$ and $ Q$ are at equal distance from $ CM$.

2007 Vietnam National Olympiad, 3

Let ABCD be trapezium that is inscribed in circle (O) with larger edge BC. P is a point lying outer segment BC. PA cut (O) at N(that means PA isn't tangent of (O)), the circle with diameter PD intersect (O) at E, DE meet BC at N. Prove that MN always pass through a fixed point.

2013 Oral Moscow Geometry Olympiad, 6

The trapezoid $ABCD$ is inscribed in the circle $w$ ($AD // BC$). The circles inscribed in the triangles $ABC$ and $ABD$ touch the base of the trapezoid $BC$ and $AD$ at points $P$ and $Q$ respectively. Points $X$ and $Y$ are the midpoints of the arcs $BC$ and $AD$ of circle $w$ that do not contain points $A$ and $B$ respectively. Prove that lines $XP$ and $YQ$ intersect on the circle $w$.

2010 Czech And Slovak Olympiad III A, 4

A circle $k$ is given with a non-diameter chord $AC$. On the tangent at point $A$ select point $X \ne A$ and mark $D$ the intersection of the circle $k$ with the interior of the line $XC$ (if any). Let $B$ a point in circle $k$ such that quadrilateral $ABCD$ is a trapezoid . Determine the set of intersections of lines $BC$ and $AD$ belonging to all such trapezoids.

2012 China Second Round Olympiad, 4

Let $F$ be the focus of parabola $y^2=2px(p>0)$, with directrix $l$ and two points $A,B$ on it. Knowing that $\angle AFB=\frac{\pi}{3}$, find the maximal value of $\frac{|MN|}{|AB|}$, where $M$ is the midpoint of $AB$ and $N$ is the projection of $M$ to $l$.

2012 NZMOC Camp Selection Problems, 2

Let $ABCD$ be a trapezoid, with $AB \parallel CD$ (the vertices are listed in cyclic order). The diagonals of this trapezoid are perpendicular to one another and intersect at $O$. The base angles $\angle DAB$ and $\angle CBA$ are both acute. A point $M$ on the line sgement $OA$ is such that $\angle BMD = 90^o$, and a point $N$ on the line segment $OB$ is such that $\angle ANC = 90^o$. Prove that triangles $OMN$ and $OBA$ are similar.