Found problems: 239
2006 Purple Comet Problems, 10
An equilateral triangle with side length $6$ has a square of side length $6$ attached to each of its edges as shown. The distance between the two farthest vertices of this figure (marked $A$ and $B$ in the figure) can be written as $m + \sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$.
[asy]
draw((0,0)--(1,0)--(1/2,sqrt(3)/2)--cycle);
draw((1,0)--(1+sqrt(3)/2,1/2)--(1/2+sqrt(3)/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2));
draw((0,0)--(-sqrt(3)/2,1/2)--(-sqrt(3)/2+1/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2));
dot((-sqrt(3)/2+1/2,1/2+sqrt(3)/2));
label("A", (-sqrt(3)/2+1/2,1/2+sqrt(3)/2), N);
draw((1,0)--(1,-1)--(0,-1)--(0,0));
dot((1,-1));
label("B", (1,-1), SE);
[/asy]
2002 All-Russian Olympiad, 2
A quadrilateral $ABCD$ is inscribed in a circle $\omega$. The tangent to $\omega$ at $A$ intersects the ray $CB$ at $K$, and the tangent to $\omega$ at $B$ intersects the ray $DA$ at $M$. Prove that if $AM=AD$ and $BK=BC$, then $ABCD$ is a trapezoid.
2010 Romanian Master of Mathematics, 3
Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent.
[i]Pavel Kozhevnikov, Russia[/i]
2010 Contests, 3
$ABCD$ is a parallelogram in which angle $DAB$ is acute. Points $A, P, B, D$ lie on one circle in exactly this order. Lines $AP$ and $CD$ intersect in $Q$. Point $O$ is the circumcenter of the triangle $CPQ$. Prove that if $D \neq O$ then the lines $AD$ and $DO$ are perpendicular.
1992 AMC 12/AHSME, 25
In triangle $ABC$, $\angle ABC = 120^{\circ}$, $AB = 3$ and $BC = 4$. If perpendiculars constructed to $\overline{AB}$ at $A$ and to $\overline{BC}$ at $C$ meet at $D$, then $CD = $
$ \textbf{(A)}\ 3\qquad\textbf{(B)}\ \frac{8}{\sqrt{3}}\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ \frac{11}{2}\qquad\textbf{(E)}\ \frac{10}{\sqrt{3}} $
1996 IMO Shortlist, 4
Let $ABC$ be an equilateral triangle and let $P$ be a point in its interior. Let the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ at the points $A_1$, $B_1$, $C_1$, respectively. Prove that
$A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A$.
2010 AMC 12/AHSME, 22
Let $ ABCD$ be a cyclic quadrilateral. The side lengths of $ ABCD$ are distinct integers less than $ 15$ such that $ BC\cdot CD\equal{}AB\cdot DA$. What is the largest possible value of $ BD$?
$ \textbf{(A)}\ \sqrt{\frac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\frac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\frac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\frac{533}{2}}$
2005 AIME Problems, 14
In triangle $ABC$, $AB=13$, $BC=15$, and $CA=14$. Point $D$ is on $\overline{BC}$ with $CD=6.$ Point $E$ is on $\overline{BC}$ such that $\angle BAE\cong \angle CAD.$ Given that $BE=\frac pq$ where $p$ and $q$ are relatively prime positive integers, find $q.$
1994 APMO, 4
Is there an infinite set of points in the plane such that no three points are collinear, and the distance between any two points is rational?
1986 China National Olympiad, 2
In $\triangle ABC$, the length of altitude $AD$ is $12$, and the bisector $AE$ of $\angle A$ is $13$. Denote by $m$ the length of median $AF$. Find the range of $m$ when $\angle A$ is acute, orthogonal and obtuse respectively.
2014 Dutch IMO TST, 2
Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.
2014 PUMaC Geometry A, 7
Let $O$ be the center of a circle of radius $26$, and let $A$, $B$ be two distinct points on the circle, with $M$ being the midpoint of $AB$. Consider point $C$ for which $CO=34$ and $\angle COM=15^\circ$. Let $N$ be the midpoint of $CO$. Suppose that $\angle ACB=90^\circ$. Find $MN$.
2006 AMC 12/AHSME, 17
Square $ ABCD$ has side length $ s$, a circle centered at $ E$ has radius $ r$, and $ r$ and $ s$ are both rational. The circle passes through $ D$, and $ D$ lies on $ \overline{BE}$. Point $ F$ lies on the circle, on the same side of $ \overline{BE}$ as $ A$. Segment $ AF$ is tangent to the circle, and $ AF \equal{} \sqrt {9 \plus{} 5\sqrt {2}}$. What is $ r/s$?
[asy]unitsize(6mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=3;
pair B=(0,0), C=(3,0), D=(3,3), A=(0,3);
pair Ep=(3+5*sqrt(2)/6,3+5*sqrt(2)/6);
pair F=intersectionpoints(Circle(A,sqrt(9+5*sqrt(2))),Circle(Ep,5/3))[0];
pair[] dots={A,B,C,D,Ep,F};
draw(A--F);
draw(Circle(Ep,5/3));
draw(A--B--C--D--cycle);
dot(dots);
label("$A$",A,NW);
label("$B$",B,SW);
label("$C$",C,SE);
label("$D$",D,SW);
label("$E$",Ep,E);
label("$F$",F,NW);[/asy]$ \textbf{(A) } \frac {1}{2}\qquad \textbf{(B) } \frac {5}{9}\qquad \textbf{(C) } \frac {3}{5}\qquad \textbf{(D) } \frac {5}{3}\qquad \textbf{(E) } \frac {9}{5}$
2007 AMC 10, 11
A circle passes through the three vertices of an isosceles triangle that has two sides of length $ 3$ and a base of length $ 2$. What is the area of this circle?
$ \textbf{(A)}\ 2\pi\qquad \textbf{(B)}\ \frac {5}{2}\pi\qquad \textbf{(C)}\ \frac {81}{32}\pi\qquad \textbf{(D)}\ 3\pi\qquad \textbf{(E)}\ \frac {7}{2}\pi$
2018 CMIMC Geometry, 3
Let $ABC$ be a triangle with side lengths $5$, $4\sqrt 2$, and $7$. What is the area of the triangle with side lengths $\sin A$, $\sin B$, and $\sin C$?
2015 IMC, 4
Determine whether or not there exist 15 integers $m_1,\ldots,m_{15}$
such that~
$$\displaystyle \sum_{k=1}^{15}\,m_k\cdot\arctan(k) = \arctan(16). \eqno(1)$$
(Proposed by Gerhard Woeginger, Eindhoven University of Technology)
2000 Harvard-MIT Mathematics Tournament, 36
If, in a triangle of sides $a, b, c$, the incircle has radius $\frac{b+c-a}{2}$, what is the magnitude of $\angle A$?
2011 NIMO Problems, 14
In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$.
[i]Proposed by Eugene Chen
[/i]
2014 Harvard-MIT Mathematics Tournament, 6
In quadrilateral $ABCD$, we have $AB = 5$, $BC = 6$, $CD = 5$, $DA = 4$, and $\angle ABC = 90^\circ$. Let $AC$ and $BD$ meet at $E$. Compute $\dfrac{BE}{ED}$.
2003 AIME Problems, 12
In convex quadrilateral $ABCD$, $\angle A \cong \angle C$, $AB = CD = 180$, and $AD \neq BC$. The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor$. (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x$.)
1985 AIME Problems, 9
In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of $\alpha$, $\beta$, and $\alpha + \beta$ radians, respectively, where $\alpha + \beta < \pi$. If $\cos \alpha$, which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?
2013 Online Math Open Problems, 40
Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $AC=15$. Let $M$ be the midpoint of $BC$ and let $\Gamma$ be the circle passing through $A$ and tangent to line $BC$ at $M$. Let $\Gamma$ intersect lines $AB$ and $AC$ at points $D$ and $E$, respectively, and let $N$ be the midpoint of $DE$. Suppose line $MN$ intersects lines $AB$ and $AC$ at points $P$ and $O$, respectively. If the ratio $MN:NO:OP$ can be written in the form $a:b:c$ with $a,b,c$ positive integers satisfying $\gcd(a,b,c)=1$, find $a+b+c$.
[i]James Tao[/i]
2006 Kyiv Mathematical Festival, 3
See all the problems from 5-th Kyiv math festival
[url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url]
Let $O$ be the circumcenter and $H$ be the intersection point of the altitudes of acute triangle $ABC.$ The straight lines $BH$ and $CH$ intersect the segments $CO$ and $BO$ at points $D$ and $E$ respectively. Prove that if triangles $ODH$ and $OEH$ are isosceles then triangle $ABC$ is isosceles too.
2010 AMC 10, 14
Triangle $ ABC$ has $ AB \equal{} 2 \cdot AC$. Let $ D$ and $ E$ be on $ \overline{AB}$ and $ \overline{BC}$, respectively, such that $ \angle{BAE} \equal{} \angle{ACD}.$ Let $ F$ be the intersection of segments $ AE$ and $ CD$, and suppose that $ \triangle{CFE}$ is equilateral. What is $ \angle{ACB}$?
$ \textbf{(A)}\ 60^{\circ}\qquad \textbf{(B)}\ 75^{\circ}\qquad \textbf{(C)}\ 90^{\circ}\qquad \textbf{(D)}\ 105^{\circ}\qquad \textbf{(E)}\ 120^{\circ}$
2007 Harvard-MIT Mathematics Tournament, 7
Convex quadrilateral $ABCD$ has sides $AB=BC=7$, $CD=5$, and $AD=3$. Given additionally that $m\angle ABC=60^\circ$, find $BD$.