Found problems: 3349
2014 ELMO Shortlist, 5
Let $P$ be a point in the interior of an acute triangle $ABC$, and let $Q$ be its isogonal conjugate. Denote by $\omega_P$ and $\omega_Q$ the circumcircles of triangles $BPC$ and $BQC$, respectively. Suppose the circle with diameter $\overline{AP}$ intersects $\omega_P$ again at $M$, and line $AM$ intersects $\omega_P$ again at $X$. Similarly, suppose the circle with diameter $\overline{AQ}$ intersects $\omega_Q$ again at $N$, and line $AN$ intersects $\omega_Q$ again at $Y$.
Prove that lines $MN$ and $XY$ are parallel.
(Here, the points $P$ and $Q$ are [i]isogonal conjugates[/i] with respect to $\triangle ABC$ if the internal angle bisectors of $\angle BAC$, $\angle CBA$, and $\angle ACB$ also bisect the angles $\angle PAQ$, $\angle PBQ$, and $\angle PCQ$, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)
[i]Proposed by Sammy Luo[/i]
V Soros Olympiad 1998 - 99 (Russia), 10.2
On the coordinate plane, draw all points$ M(x, y)$, the coordinates of which satisfy the inequalities
$$\cos(x + y)^2 \le \cos(x - y)^2, \,\,\, 0 \le x^3, \,\,\, 0 \le y^3.$$
2006 Moldova National Olympiad, 10.6
Let a triangle $ABC$ satisfy $AC = BC$; in other words, let $ABC$ be an isosceles triangle with base $AB$. Let $P$ be a point inside the triangle $ABC$ such that $\angle PAB = \angle PBC$. Denote by $M$ the midpoint of the segment $AB$. Show that $\angle APM + \angle BPC = 180^{\circ}$.
2005 Today's Calculation Of Integral, 43
Evaluate
\[\int_0^{\frac{\pi}{2}} \cos ^ {2004}x\cos 2004x\ dx\]
1992 China Team Selection Test, 1
A triangle $ABC$ is given in the plane with $AB = \sqrt{7},$ $BC = \sqrt{13}$ and $CA = \sqrt{19},$ circles are drawn with centers at $A,B$ and $C$ and radii $\frac{1}{3},$ $\frac{2}{3}$ and $1,$ respectively. Prove that there are points $A',B',C'$ on these three circles respectively such that triangle $ABC$ is congruent to triangle $A'B'C'.$
2018 Ramnicean Hope, 1
Show that $ 2/3+\sin 2018^{\circ } >0. $
[i]Costică Ambrinoc[/i]
2013 Today's Calculation Of Integral, 880
For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and
let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows.
(1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$.
(2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$
(3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.
2000 Putnam, 3
Let $f(t) = \displaystyle\sum_{j=1}^{N} a_j \sin (2\pi jt)$, where each $a_j$ is areal and $a_N$ is not equal to $0$.
Let $N_k$ denote the number of zeroes (including multiplicites) of $\dfrac{d^k f}{dt^k}$. Prove that \[ N_0 \le N_1 \le N_2 \le \cdots \text { and } \lim_{k \rightarrow \infty} N_k = 2N. \] [color=green][Only zeroes in [0, 1) should be counted.][/color]
2013 IPhOO, 6
A particle with charge $8.0 \, \mu\text{C}$ and mass $17 \, \text{g}$ enters a magnetic field of magnitude $\text{7.8 mT}$ perpendicular to its non-zero velocity. After 30 seconds, let the absolute value of the angle between its initial velocity and its current velocity, in radians, be $\theta$. Find $100\theta$.
[i](B. Dejean, 5 points)[/i]
2005 AMC 12/AHSME, 24
All three vertices of an equilateral triangle are on the parabola $ y \equal{} x^2$, and one of its sides has a slope of 2. The x-coordinates of the three vertices have a sum of $ m/n$, where $ m$ and $ n$ are relatively prime positive integers. What is the value of $ m \plus{} n$?
$ \textbf{(A)}\ 14\qquad
\textbf{(B)}\ 15\qquad
\textbf{(C)}\ 16\qquad
\textbf{(D)}\ 17\qquad
\textbf{(E)}\ 18$
2004 Harvard-MIT Mathematics Tournament, 4
Let $f(x)=\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(x))))))))$, and suppose that the number $a$ satisfies the equation $a=\cos a$. Express $f'(a)$ as a polynomial in $a$.
2007 Today's Calculation Of Integral, 204
Evaluate
\[\int_{0}^{1}\frac{x\ dx}{(x^{2}+x+1)^{\frac{3}{2}}}\]
2012 USA Team Selection Test, 2
In cyclic quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $P$. Let $E$ and $F$ be the respective feet of the perpendiculars from $P$ to lines $AB$ and $CD$. Segments $BF$ and $CE$ meet at $Q$. Prove that lines $PQ$ and $EF$ are perpendicular to each other.
2007 Today's Calculation Of Integral, 210
Evaluate $\int_{1}^{\pi}\left(x^{3}\ln x-\frac{6}{x}\right)\sin x\ dx$.
2000 South africa National Olympiad, 4
$ABCD$ is a square of side 1. $P$ and $Q$ are points on $AB$ and $BC$ such that $\widehat{PDQ} = 45^{\circ}$. Find the perimeter of $\Delta PBQ$.
2009 Today's Calculation Of Integral, 491
Let $ f(x)\equal{}\sin 3x\plus{}\cos x,\ g(x)\equal{}\cos 3x\plus{}\sin x.$
(1) Evaluate $ \int_0^{2\pi} \{f(x)^2\plus{}g(x)^2\}\ dx$.
(2) Find the area of the region bounded by two curves $ y\equal{}f(x)$ and $ y\equal{}g(x)\ (0\leq x\leq \pi).$
2005 Today's Calculation Of Integral, 12
Calculate the following indefinite integrals.
[1] $\int \frac{dx}{1+\cos x}$
[2] $\int x\sqrt{x^2-1}dx$
[3] $\int a^{-\frac{x}{2}}dx\ \ (a>0,a\neq 1)$
[4] $\int \frac{\sin ^ 3 x}{1+\cos x}dx$
[5] $\int e^{4x}\sin 2x dx$
2010 Contests, 3
Prove that there is no real number $x$ satisfying both equations \begin{align*}2^x+1=2\sin x \\ 2^x-1=2\cos x.\end{align*}
2012 Indonesia TST, 1
Suppose $P(x,y)$ is a homogenous non-constant polynomial with real coefficients such that $P(\sin t, \cos t) = 1$ for all real $t$. Prove that $P(x,y) = (x^2+y^2)^k$ for some positive integer $k$.
(A polynomial $A(x,y)$ with real coefficients and having a degree of $n$ is homogenous if it is the sum of $a_ix^iy^{n-i}$ for some real number $a_i$, for all integer $0 \le i \le n$.)
1967 IMO Longlists, 55
Find all $x$ for which, for all $n,$ \[\sum^n_{k=1} \sin {k x} \leq \frac{\sqrt{3}}{2}.\]
VI Soros Olympiad 1999 - 2000 (Russia), 9.8
Let $a_n$ denote an angle from the interval for each $\left( 0, \frac{\pi}{2}\right)$ , the tangent of which is equal to $n$ . Prove that
$$\sqrt{1+1^2} \sin(a_1-a_{1000}) + \sqrt{1+2^2} \sin(a_2-a_{1000})+...+\sqrt{1+2000^2} \sin(a_{2000}-a_{1000}) = \sin a_{1000} $$
2007 India IMO Training Camp, 1
Show that in a non-equilateral triangle, the following statements are equivalent:
$(a)$ The angles of the triangle are in arithmetic progression.
$(b)$ The common tangent to the Nine-point circle and the Incircle is parallel to the Euler Line.
2001 IMO Shortlist, 5
Let $ABC$ be an acute triangle. Let $DAC,EAB$, and $FBC$ be isosceles triangles exterior to $ABC$, with $DA=DC, EA=EB$, and $FB=FC$, such that
\[
\angle ADC = 2\angle BAC, \quad \angle BEA= 2 \angle ABC, \quad
\angle CFB = 2 \angle ACB.
\]
Let $D'$ be the intersection of lines $DB$ and $EF$, let $E'$ be the intersection of $EC$ and $DF$, and let $F'$ be the intersection of $FA$ and $DE$. Find, with proof, the value of the sum
\[
\frac{DB}{DD'}+\frac{EC}{EE'}+\frac{FA}{FF'}.
\]
2011 Singapore Senior Math Olympiad, 1
In the triangle $ABC$, the altitude at $A$, the bisector of $\angle B$ and the median at $C$ meet at a common point. Prove (or disprove?) that the triangle $ABC$ is equilateral.
1989 IMO Shortlist, 32
The vertex $ A$ of the acute triangle $ ABC$ is equidistant from the circumcenter $ O$ and the orthocenter $ H.$ Determine all possible values for the measure of angle $ A.$